| Name | copul JSON |
| Version |
0.3.8
JSON |
| download |
| home_page | None |
| Summary | A Python package for copula analysis and computation. |
| upload_time | 2025-10-21 03:18:07 |
| maintainer | None |
| docs_url | None |
| author | None |
| requires_python | >=3.10 |
| license | None |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# copul
**copul** is a package designed for mathematical computation with and visualization of bivariate copula families.
# Install
Install the copul library using pip.
```bash
pip install copul
```
# Documentation
A guide and documentation is available at [https://copul.readthedocs.io/](https://copul.readthedocs.io/).
# Copula families and copulas
The `copul` package covers implementations of the following copula families:
- **Archimedean copula families**: The 22 Archimedean copula families from the book "Nelsen - An Introduction to Copulas" including
* Clayton
* Gumbel-Hougaard
* Frank
* Joe
* Ali-Mikhail-Haq
* etc.
- **Extreme-value copulas families**:
* BB5
* Cuadras-Augé
* Galambos
* Gumbel
* Husler-Reiss
* Joe
* Marshall-Olkin
* tEV
* Tawn
- **Elliptical copula families**:
* Gaussian
* Student's t
* Laplace.
- **Other copula families**:
* Farlie-Gumbel-Morgenstern
* Fréchet
* Mardia
* Plackett
* Raftery
Furthermore, the package provides the following copulas:
- Independence copula
- Lower and upper Fréchet bounds
- Checkerboard copulas
<!--A list of all implemented copulas can be found in `copul.Families`.
> **Note**: The following examples are also available as a Jupyter notebook in the `notes/examples` folder.-->
# Copula properties
The following properties are available for the above copula families and copulas if they exist and are known:
- `cdf`: Cumulative distribution function
- `pdf`: Probability density function
- `cond_distr_1`, `cond_distr_2`: Conditional distribution functions
- `lambda_L`, `lambda_U`: Lower and upper tail dependence coefficients
- `rho`, `tau`, `xi`: Spearman's rho, Kendall's tau, and Chatterjee's xi
- `generator`, `inv_generator`: Generator and inverse generator for Archimedean copula families
- `pickands`: Pickands dependence functions for extreme-value copula families
# Copula methods
The following methods are available for the above copula families and copulas:
- `rvs`: Generate random samples from the copula
- `scatter_plot`: Generate a scatter plot of the copula
- `plot_cdf`: Visualize the cumulative distribution function
- `plot_pdf`: Visualize the probability density function
- `plot_rank_correlations`: Visualize Spearman's rho, Kendall's tau, and Chatterjee's xi
- `plot_generator`: Visualize the generator function
- `plot_pickands`: Visualize the Pickands dependence function
Raw data
{
"_id": null,
"home_page": null,
"name": "copul",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Marcus Rockel <marcus.rockel@finance.uni-freiburg.de>",
"download_url": "https://files.pythonhosted.org/packages/a8/93/1e5ff42e3f56cae8946e1ce85112f0e4646d0a39763a2c8a91f216b66dd2/copul-0.3.8.tar.gz",
"platform": null,
"description": "# copul\n\n**copul** is a package designed for mathematical computation with and visualization of bivariate copula families.\n\n# Install\n\nInstall the copul library using pip.\n\n```bash\npip install copul\n```\n\n# Documentation\n\nA guide and documentation is available at [https://copul.readthedocs.io/](https://copul.readthedocs.io/).\n\n# Copula families and copulas\n\nThe `copul` package covers implementations of the following copula families:\n\n- **Archimedean copula families**: The 22 Archimedean copula families from the book \"Nelsen - An Introduction to Copulas\" including \n * Clayton\n * Gumbel-Hougaard\n * Frank\n * Joe\n * Ali-Mikhail-Haq\n * etc.\n- **Extreme-value copulas families**:\n * BB5\n * Cuadras-Aug\u00e9\n * Galambos\n * Gumbel\n * Husler-Reiss\n * Joe\n * Marshall-Olkin\n * tEV\n * Tawn\n- **Elliptical copula families**:\n * Gaussian\n * Student's t\n * Laplace.\n- **Other copula families**:\n * Farlie-Gumbel-Morgenstern\n * Fr\u00e9chet\n * Mardia\n * Plackett\n * Raftery\n\n\nFurthermore, the package provides the following copulas:\n\n- Independence copula\n- Lower and upper Fr\u00e9chet bounds\n- Checkerboard copulas\n\n<!--A list of all implemented copulas can be found in `copul.Families`.\n\n> **Note**: The following examples are also available as a Jupyter notebook in the `notes/examples` folder.-->\n\n# Copula properties\n\nThe following properties are available for the above copula families and copulas if they exist and are known:\n\n- `cdf`: Cumulative distribution function\n- `pdf`: Probability density function\n- `cond_distr_1`, `cond_distr_2`: Conditional distribution functions\n- `lambda_L`, `lambda_U`: Lower and upper tail dependence coefficients\n- `rho`, `tau`, `xi`: Spearman's rho, Kendall's tau, and Chatterjee's xi\n- `generator`, `inv_generator`: Generator and inverse generator for Archimedean copula families\n- `pickands`: Pickands dependence functions for extreme-value copula families\n\n# Copula methods\n\nThe following methods are available for the above copula families and copulas:\n\n- `rvs`: Generate random samples from the copula\n- `scatter_plot`: Generate a scatter plot of the copula\n- `plot_cdf`: Visualize the cumulative distribution function\n- `plot_pdf`: Visualize the probability density function\n- `plot_rank_correlations`: Visualize Spearman's rho, Kendall's tau, and Chatterjee's xi\n- `plot_generator`: Visualize the generator function\n- `plot_pickands`: Visualize the Pickands dependence function\n",
"bugtrack_url": null,
"license": null,
"summary": "A Python package for copula analysis and computation.",
"version": "0.3.8",
"project_urls": {
"Documentation": "https://copul.readthedocs.io",
"Issue Tracker": "https://github.com/Corrram/copul/issues",
"Repository": "https://github.com/Corrram/copul"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "280ad2aa27355ccb8c7aa235ad1c5e1704c4b0351fb1ac4a3b81e1b1b5897f4e",
"md5": "499af371036897becbb551ff3873bb39",
"sha256": "5676fb999a11050efe5cb9f673d15ad0247928d318285c0fc90caddc0e5c1700"
},
"downloads": -1,
"filename": "copul-0.3.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "499af371036897becbb551ff3873bb39",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 374494,
"upload_time": "2025-10-21T03:18:05",
"upload_time_iso_8601": "2025-10-21T03:18:05.545200Z",
"url": "https://files.pythonhosted.org/packages/28/0a/d2aa27355ccb8c7aa235ad1c5e1704c4b0351fb1ac4a3b81e1b1b5897f4e/copul-0.3.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a8931e5ff42e3f56cae8946e1ce85112f0e4646d0a39763a2c8a91f216b66dd2",
"md5": "e648d3684a4a4d3f229f269395b8184e",
"sha256": "6e9ed80fca58531466f6c8e6f1bc2c4cbb7d9b23b7c9928889328478a54d4fa5"
},
"downloads": -1,
"filename": "copul-0.3.8.tar.gz",
"has_sig": false,
"md5_digest": "e648d3684a4a4d3f229f269395b8184e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 2883550,
"upload_time": "2025-10-21T03:18:07",
"upload_time_iso_8601": "2025-10-21T03:18:07.738054Z",
"url": "https://files.pythonhosted.org/packages/a8/93/1e5ff42e3f56cae8946e1ce85112f0e4646d0a39763a2c8a91f216b66dd2/copul-0.3.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-21 03:18:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Corrram",
"github_project": "copul",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "copul"
}