Name | copul JSON |
Version |
0.1.1
JSON |
| download |
home_page | https://github.com/Corrram/copul |
Summary | Mathematical computation and visualization of bivariate copulas. |
upload_time | 2024-09-20 15:40:34 |
maintainer | None |
docs_url | None |
author | Marcus Rockel |
requires_python | <4.0,>=3.10 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# copul
**copul** is a package designed for mathematical computation with and visualization of bivariate copula families.
# Install
Install the copul library using pip.
```bash
pip install copul
```
# Documentation
A guide and documentation is available at [https://copul.readthedocs.io/](https://copul.readthedocs.io/).
# Copula families and copulas
The `copul` package covers implementations of the following copula families:
- **Archimedean copula families**: The 22 Archimedean copula families from the book "Nelsen - An Introduction to Copulas" including
* Clayton
* Gumbel-Hougaard
* Frank
* Joe
* Ali-Mikhail-Haq
* etc.
- **Extreme-value copulas families**:
* BB5
* Cuadras-Augé
* Galambos
* Gumbel
* Husler-Reiss
* Joe
* Marshall-Olkin
* tEV
* Tawn
- **Elliptical copula families**:
* Gaussian
* Student's t
* Laplace.
- **Other copula families**:
* Farlie-Gumbel-Morgenstern
* Fréchet
* Mardia
* Plackett
* Raftery
Furthermore, the package provides the following copulas:
- Independence copula
- Lower and upper Fréchet bounds
- Checkerboard copulas
<!--A list of all implemented copulas can be found in `copul.Families`.
> **Note**: The following examples are also available as a Jupyter notebook in the `notes/examples` folder.-->
# Copula properties
The following properties are available for the above copula families and copulas if they exist and are known:
- `cdf`: Cumulative distribution function
- `pdf`: Probability density function
- `cond_distr_1`, `cond_distr_2`: Conditional distribution functions
- `lambda_L`, `lambda_U`: Lower and upper tail dependence coefficients
- `rho`, `tau`, `xi`: Spearman's rho, Kendall's tau, and Chatterjee's xi
- `generator`, `inv_generator`: Generator and inverse generator for Archimedean copula families
- `pickands`: Pickands dependence functions for extreme-value copula families
# Copula methods
The following methods are available for the above copula families and copulas:
- `rvs`: Generate random samples from the copula
- `scatter_plot`: Generate a scatter plot of the copula
- `plot_cdf`: Visualize the cumulative distribution function
- `plot_pdf`: Visualize the probability density function
- `plot_rank_correlations`: Visualize Spearman's rho, Kendall's tau, and Chatterjee's xi
- `plot_generator`: Visualize the generator function
- `plot_pickands`: Visualize the Pickands dependence function
Raw data
{
"_id": null,
"home_page": "https://github.com/Corrram/copul",
"name": "copul",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": null,
"author": "Marcus Rockel",
"author_email": "marcus.rockel@finance.uni-freiburg.de",
"download_url": "https://files.pythonhosted.org/packages/fd/30/2cdd81a28b5808fca99df604f89056b5c05513eebaaece1715b9e349ee8f/copul-0.1.1.tar.gz",
"platform": null,
"description": "# copul\n\n**copul** is a package designed for mathematical computation with and visualization of bivariate copula families.\n\n# Install\n\nInstall the copul library using pip.\n\n```bash\npip install copul\n```\n\n# Documentation\n\nA guide and documentation is available at [https://copul.readthedocs.io/](https://copul.readthedocs.io/).\n\n# Copula families and copulas\n\nThe `copul` package covers implementations of the following copula families:\n\n- **Archimedean copula families**: The 22 Archimedean copula families from the book \"Nelsen - An Introduction to Copulas\" including \n * Clayton\n * Gumbel-Hougaard\n * Frank\n * Joe\n * Ali-Mikhail-Haq\n * etc.\n- **Extreme-value copulas families**:\n * BB5\n * Cuadras-Aug\u00e9\n * Galambos\n * Gumbel\n * Husler-Reiss\n * Joe\n * Marshall-Olkin\n * tEV\n * Tawn\n- **Elliptical copula families**:\n * Gaussian\n * Student's t\n * Laplace.\n- **Other copula families**:\n * Farlie-Gumbel-Morgenstern\n * Fr\u00e9chet\n * Mardia\n * Plackett\n * Raftery\n\n\nFurthermore, the package provides the following copulas:\n\n- Independence copula\n- Lower and upper Fr\u00e9chet bounds\n- Checkerboard copulas\n\n<!--A list of all implemented copulas can be found in `copul.Families`.\n\n> **Note**: The following examples are also available as a Jupyter notebook in the `notes/examples` folder.-->\n\n# Copula properties\n\nThe following properties are available for the above copula families and copulas if they exist and are known:\n\n- `cdf`: Cumulative distribution function\n- `pdf`: Probability density function\n- `cond_distr_1`, `cond_distr_2`: Conditional distribution functions\n- `lambda_L`, `lambda_U`: Lower and upper tail dependence coefficients\n- `rho`, `tau`, `xi`: Spearman's rho, Kendall's tau, and Chatterjee's xi\n- `generator`, `inv_generator`: Generator and inverse generator for Archimedean copula families\n- `pickands`: Pickands dependence functions for extreme-value copula families\n\n# Copula methods\n\nThe following methods are available for the above copula families and copulas:\n\n- `rvs`: Generate random samples from the copula\n- `scatter_plot`: Generate a scatter plot of the copula\n- `plot_cdf`: Visualize the cumulative distribution function\n- `plot_pdf`: Visualize the probability density function\n- `plot_rank_correlations`: Visualize Spearman's rho, Kendall's tau, and Chatterjee's xi\n- `plot_generator`: Visualize the generator function\n- `plot_pickands`: Visualize the Pickands dependence function\n",
"bugtrack_url": null,
"license": null,
"summary": "Mathematical computation and visualization of bivariate copulas.",
"version": "0.1.1",
"project_urls": {
"Documentation": "https://copul.readthedocs.io",
"Homepage": "https://github.com/Corrram/copul",
"Issue Tracker": "https://github.com/Corrram/copul/issues",
"Repository": "https://github.com/Corrram/copul"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4206835f7d9e7b7513a075464346a9f7ec3119df155e937a91869c4951a1c8a1",
"md5": "7e6fee2406100e2b2e8059ac91b87910",
"sha256": "eb62f1f8c185b0a6e8db38be62cb07845a7851c3de9b68d38677672ddd346d8c"
},
"downloads": -1,
"filename": "copul-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "7e6fee2406100e2b2e8059ac91b87910",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 200599,
"upload_time": "2024-09-20T15:40:33",
"upload_time_iso_8601": "2024-09-20T15:40:33.301642Z",
"url": "https://files.pythonhosted.org/packages/42/06/835f7d9e7b7513a075464346a9f7ec3119df155e937a91869c4951a1c8a1/copul-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fd302cdd81a28b5808fca99df604f89056b5c05513eebaaece1715b9e349ee8f",
"md5": "a989b9c4e172dfe262304c7486b4cdcb",
"sha256": "a9b7179b81e1b03a3fb6af89fd0d699d0c830a6f33fe4f7f5cb3837a66b3f4ec"
},
"downloads": -1,
"filename": "copul-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "a989b9c4e172dfe262304c7486b4cdcb",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 165550,
"upload_time": "2024-09-20T15:40:34",
"upload_time_iso_8601": "2024-09-20T15:40:34.747955Z",
"url": "https://files.pythonhosted.org/packages/fd/30/2cdd81a28b5808fca99df604f89056b5c05513eebaaece1715b9e349ee8f/copul-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-20 15:40:34",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Corrram",
"github_project": "copul",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "copul"
}