copul


Namecopul JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/Corrram/copul
SummaryMathematical computation and visualization of bivariate copulas.
upload_time2024-09-20 15:40:34
maintainerNone
docs_urlNone
authorMarcus Rockel
requires_python<4.0,>=3.10
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # copul

**copul** is a package designed for mathematical computation with and visualization of bivariate copula families.

# Install

Install the copul library using pip.

```bash
pip install copul
```

# Documentation

A guide and documentation is available at [https://copul.readthedocs.io/](https://copul.readthedocs.io/).

# Copula families and copulas

The `copul` package covers implementations of the following copula families:

- **Archimedean copula families**: The 22 Archimedean copula families from the book "Nelsen - An Introduction to Copulas" including 
    * Clayton
    * Gumbel-Hougaard
    * Frank
    * Joe
    * Ali-Mikhail-Haq
    * etc.
- **Extreme-value copulas families**:
    * BB5
    * Cuadras-Augé
    * Galambos
    * Gumbel
    * Husler-Reiss
    * Joe
    * Marshall-Olkin
    * tEV
    * Tawn
- **Elliptical copula families**:
    * Gaussian
    * Student's t
    * Laplace.
- **Other copula families**:
    * Farlie-Gumbel-Morgenstern
    * Fréchet
    * Mardia
    * Plackett
    * Raftery


Furthermore, the package provides the following copulas:

- Independence copula
- Lower and upper Fréchet bounds
- Checkerboard copulas

<!--A list of all implemented copulas can be found in `copul.Families`.

> **Note**: The following examples are also available as a Jupyter notebook in the `notes/examples` folder.-->

# Copula properties

The following properties are available for the above copula families and copulas if they exist and are known:

- `cdf`: Cumulative distribution function
- `pdf`: Probability density function
- `cond_distr_1`, `cond_distr_2`: Conditional distribution functions
- `lambda_L`, `lambda_U`: Lower and upper tail dependence coefficients
- `rho`, `tau`, `xi`: Spearman's rho, Kendall's tau, and Chatterjee's xi
- `generator`, `inv_generator`: Generator and inverse generator for Archimedean copula families
- `pickands`: Pickands dependence functions for extreme-value copula families

# Copula methods

The following methods are available for the above copula families and copulas:

- `rvs`: Generate random samples from the copula
- `scatter_plot`: Generate a scatter plot of the copula
- `plot_cdf`: Visualize the cumulative distribution function
- `plot_pdf`: Visualize the probability density function
- `plot_rank_correlations`: Visualize Spearman's rho, Kendall's tau, and Chatterjee's xi
- `plot_generator`: Visualize the generator function
- `plot_pickands`: Visualize the Pickands dependence function

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Corrram/copul",
    "name": "copul",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Marcus Rockel",
    "author_email": "marcus.rockel@finance.uni-freiburg.de",
    "download_url": "https://files.pythonhosted.org/packages/fd/30/2cdd81a28b5808fca99df604f89056b5c05513eebaaece1715b9e349ee8f/copul-0.1.1.tar.gz",
    "platform": null,
    "description": "# copul\n\n**copul** is a package designed for mathematical computation with and visualization of bivariate copula families.\n\n# Install\n\nInstall the copul library using pip.\n\n```bash\npip install copul\n```\n\n# Documentation\n\nA guide and documentation is available at [https://copul.readthedocs.io/](https://copul.readthedocs.io/).\n\n# Copula families and copulas\n\nThe `copul` package covers implementations of the following copula families:\n\n- **Archimedean copula families**: The 22 Archimedean copula families from the book \"Nelsen - An Introduction to Copulas\" including \n    * Clayton\n    * Gumbel-Hougaard\n    * Frank\n    * Joe\n    * Ali-Mikhail-Haq\n    * etc.\n- **Extreme-value copulas families**:\n    * BB5\n    * Cuadras-Aug\u00e9\n    * Galambos\n    * Gumbel\n    * Husler-Reiss\n    * Joe\n    * Marshall-Olkin\n    * tEV\n    * Tawn\n- **Elliptical copula families**:\n    * Gaussian\n    * Student's t\n    * Laplace.\n- **Other copula families**:\n    * Farlie-Gumbel-Morgenstern\n    * Fr\u00e9chet\n    * Mardia\n    * Plackett\n    * Raftery\n\n\nFurthermore, the package provides the following copulas:\n\n- Independence copula\n- Lower and upper Fr\u00e9chet bounds\n- Checkerboard copulas\n\n<!--A list of all implemented copulas can be found in `copul.Families`.\n\n> **Note**: The following examples are also available as a Jupyter notebook in the `notes/examples` folder.-->\n\n# Copula properties\n\nThe following properties are available for the above copula families and copulas if they exist and are known:\n\n- `cdf`: Cumulative distribution function\n- `pdf`: Probability density function\n- `cond_distr_1`, `cond_distr_2`: Conditional distribution functions\n- `lambda_L`, `lambda_U`: Lower and upper tail dependence coefficients\n- `rho`, `tau`, `xi`: Spearman's rho, Kendall's tau, and Chatterjee's xi\n- `generator`, `inv_generator`: Generator and inverse generator for Archimedean copula families\n- `pickands`: Pickands dependence functions for extreme-value copula families\n\n# Copula methods\n\nThe following methods are available for the above copula families and copulas:\n\n- `rvs`: Generate random samples from the copula\n- `scatter_plot`: Generate a scatter plot of the copula\n- `plot_cdf`: Visualize the cumulative distribution function\n- `plot_pdf`: Visualize the probability density function\n- `plot_rank_correlations`: Visualize Spearman's rho, Kendall's tau, and Chatterjee's xi\n- `plot_generator`: Visualize the generator function\n- `plot_pickands`: Visualize the Pickands dependence function\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Mathematical computation and visualization of bivariate copulas.",
    "version": "0.1.1",
    "project_urls": {
        "Documentation": "https://copul.readthedocs.io",
        "Homepage": "https://github.com/Corrram/copul",
        "Issue Tracker": "https://github.com/Corrram/copul/issues",
        "Repository": "https://github.com/Corrram/copul"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4206835f7d9e7b7513a075464346a9f7ec3119df155e937a91869c4951a1c8a1",
                "md5": "7e6fee2406100e2b2e8059ac91b87910",
                "sha256": "eb62f1f8c185b0a6e8db38be62cb07845a7851c3de9b68d38677672ddd346d8c"
            },
            "downloads": -1,
            "filename": "copul-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7e6fee2406100e2b2e8059ac91b87910",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 200599,
            "upload_time": "2024-09-20T15:40:33",
            "upload_time_iso_8601": "2024-09-20T15:40:33.301642Z",
            "url": "https://files.pythonhosted.org/packages/42/06/835f7d9e7b7513a075464346a9f7ec3119df155e937a91869c4951a1c8a1/copul-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd302cdd81a28b5808fca99df604f89056b5c05513eebaaece1715b9e349ee8f",
                "md5": "a989b9c4e172dfe262304c7486b4cdcb",
                "sha256": "a9b7179b81e1b03a3fb6af89fd0d699d0c830a6f33fe4f7f5cb3837a66b3f4ec"
            },
            "downloads": -1,
            "filename": "copul-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "a989b9c4e172dfe262304c7486b4cdcb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 165550,
            "upload_time": "2024-09-20T15:40:34",
            "upload_time_iso_8601": "2024-09-20T15:40:34.747955Z",
            "url": "https://files.pythonhosted.org/packages/fd/30/2cdd81a28b5808fca99df604f89056b5c05513eebaaece1715b9e349ee8f/copul-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-20 15:40:34",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Corrram",
    "github_project": "copul",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "copul"
}
        
Elapsed time: 1.16638s