Name | coreframe JSON |
Version |
1.0.3
JSON |
| download |
home_page | None |
Summary | COmmon REsearch FRAMEwork |
upload_time | 2024-12-19 16:23:54 |
maintainer | None |
docs_url | None |
author | MetaEarth Lab |
requires_python | >=3.6 |
license | None |
keywords |
python
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
![test results](https://github.com/kimlab/cf/actions/workflows/test.yml/badge.svg)
# COREFRAME
**COmmon REsearch FRAMEwork** - A Python framework for Earth science research and data analysis.
## Overview
COREFRAME is a specialized Python framework designed for Earth science research, providing robust tools for handling complex multidimensional datasets in atmospheric, oceanic, and climate sciences.
## Features
### CoreArray
- Coordinate-aware array operations based on NumPy
- Intelligent dimension handling
- Seamless integration with NumPy's universal functions
- Support for labeled dimensions and metadata
### HDF5 Integration
- High-level interface for HDF5 files
- Automatic coordinate system management
- Advanced time dimension handling with calendar support
- Comprehensive metadata preservation
### Performance Optimization
- Result caching system for computationally intensive operations
- Parallel processing capabilities with configurable worker pools
- Compressed storage options
- Hash-based cache management
### Data Analysis Tools
- Efficient time-series operations
- Support for various calendar systems
- Area-based spatial calculations
- Geographical coordinate support
- Gridded data handling
## Installation
```bash
pip install coreframe
```
### Requirements
- Python 3.6 or higher
- NumPy
- h5py
## Quick Start
```python
import numpy as np
from coreframe import CoreArray
# Create a sample dataset
data = np.random.rand(500, 100, 100)
time = np.arange('2001-01-01', '2002-05-15', dtype='datetime64[D]')
lat = np.linspace(-90, 90, 100)
lon = np.linspace(-180, 180, 100)
# Create CoreArray with coordinates
coords = {
'time': time,
'lat': lat,
'lon': lon
}
arr = CoreArray(data, coords)
# Perform operations
result = arr.apply_by_time("time", "1M", np.max, axis=0)
```
## Key Use Cases
- Climate data analysis
- Atmospheric science research
- Oceanographic studies
- Earth system modeling
- Geospatial data processing
- Environmental time series analysis
## Contributing
We welcome contributions! Please feel free to submit a Pull Request.
## License
This project is licensed under the MIT License - see the LICENSE file for details.
## Support
For support, please open an issue on the GitHub repository.
## Authors
Developed and maintained by the MetaEarth Lab.
---
For more information, please contact: hyungjun@gmail.com
Raw data
{
"_id": null,
"home_page": null,
"name": "coreframe",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "python",
"author": "MetaEarth Lab",
"author_email": "hyungjun@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/42/95/daf968cb59ff0fb55c0f26f771393ca607eb721576b99fa947957bcfa1cb/coreframe-1.0.3.tar.gz",
"platform": null,
"description": "![test results](https://github.com/kimlab/cf/actions/workflows/test.yml/badge.svg)\r\n\r\n# COREFRAME\r\n\r\n**COmmon REsearch FRAMEwork** - A Python framework for Earth science research and data analysis.\r\n\r\n## Overview\r\n\r\nCOREFRAME is a specialized Python framework designed for Earth science research, providing robust tools for handling complex multidimensional datasets in atmospheric, oceanic, and climate sciences.\r\n\r\n## Features\r\n\r\n### CoreArray\r\n- Coordinate-aware array operations based on NumPy\r\n- Intelligent dimension handling\r\n- Seamless integration with NumPy's universal functions\r\n- Support for labeled dimensions and metadata\r\n\r\n### HDF5 Integration\r\n- High-level interface for HDF5 files\r\n- Automatic coordinate system management\r\n- Advanced time dimension handling with calendar support\r\n- Comprehensive metadata preservation\r\n\r\n### Performance Optimization\r\n- Result caching system for computationally intensive operations\r\n- Parallel processing capabilities with configurable worker pools\r\n- Compressed storage options\r\n- Hash-based cache management\r\n\r\n### Data Analysis Tools\r\n- Efficient time-series operations\r\n- Support for various calendar systems\r\n- Area-based spatial calculations\r\n- Geographical coordinate support\r\n- Gridded data handling\r\n\r\n## Installation\r\n\r\n```bash\r\npip install coreframe\r\n```\r\n\r\n### Requirements\r\n- Python 3.6 or higher\r\n- NumPy\r\n- h5py\r\n\r\n## Quick Start\r\n\r\n```python\r\nimport numpy as np\r\nfrom coreframe import CoreArray\r\n\r\n# Create a sample dataset\r\ndata = np.random.rand(500, 100, 100)\r\ntime = np.arange('2001-01-01', '2002-05-15', dtype='datetime64[D]')\r\nlat = np.linspace(-90, 90, 100)\r\nlon = np.linspace(-180, 180, 100)\r\n\r\n# Create CoreArray with coordinates\r\ncoords = {\r\n 'time': time,\r\n 'lat': lat,\r\n 'lon': lon\r\n}\r\narr = CoreArray(data, coords)\r\n\r\n# Perform operations\r\nresult = arr.apply_by_time(\"time\", \"1M\", np.max, axis=0)\r\n```\r\n\r\n## Key Use Cases\r\n- Climate data analysis\r\n- Atmospheric science research\r\n- Oceanographic studies\r\n- Earth system modeling\r\n- Geospatial data processing\r\n- Environmental time series analysis\r\n\r\n## Contributing\r\n\r\nWe welcome contributions! Please feel free to submit a Pull Request.\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License - see the LICENSE file for details.\r\n\r\n## Support\r\n\r\nFor support, please open an issue on the GitHub repository.\r\n\r\n## Authors\r\n\r\nDeveloped and maintained by the MetaEarth Lab.\r\n\r\n---\r\n\r\nFor more information, please contact: hyungjun@gmail.com\n",
"bugtrack_url": null,
"license": null,
"summary": "COmmon REsearch FRAMEwork",
"version": "1.0.3",
"project_urls": null,
"split_keywords": [
"python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a6ff23788ecf09ef342008fd62e8df7ce2ea128f7f0a3f92dd50b732df8b43b9",
"md5": "c21a8c35506ff9885e8fd26c1030c592",
"sha256": "45234642de2d57934ecd75fc39117ebd225cb0d5508ae6e1321546c943267d55"
},
"downloads": -1,
"filename": "coreframe-1.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c21a8c35506ff9885e8fd26c1030c592",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 18360,
"upload_time": "2024-12-19T16:23:50",
"upload_time_iso_8601": "2024-12-19T16:23:50.914302Z",
"url": "https://files.pythonhosted.org/packages/a6/ff/23788ecf09ef342008fd62e8df7ce2ea128f7f0a3f92dd50b732df8b43b9/coreframe-1.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4295daf968cb59ff0fb55c0f26f771393ca607eb721576b99fa947957bcfa1cb",
"md5": "63479fee713856dab1cb93f0bbba600a",
"sha256": "08ae4ebe9e9f0ead8273beae64d2a90cafc00ba4efdbb654087cb7728935148b"
},
"downloads": -1,
"filename": "coreframe-1.0.3.tar.gz",
"has_sig": false,
"md5_digest": "63479fee713856dab1cb93f0bbba600a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 20383,
"upload_time": "2024-12-19T16:23:54",
"upload_time_iso_8601": "2024-12-19T16:23:54.846282Z",
"url": "https://files.pythonhosted.org/packages/42/95/daf968cb59ff0fb55c0f26f771393ca607eb721576b99fa947957bcfa1cb/coreframe-1.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-19 16:23:54",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "coreframe"
}