coreframe


Namecoreframe JSON
Version 1.0.3 PyPI version JSON
download
home_pageNone
SummaryCOmmon REsearch FRAMEwork
upload_time2024-12-19 16:23:54
maintainerNone
docs_urlNone
authorMetaEarth Lab
requires_python>=3.6
licenseNone
keywords python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![test results](https://github.com/kimlab/cf/actions/workflows/test.yml/badge.svg)

# COREFRAME

**COmmon REsearch FRAMEwork** - A Python framework for Earth science research and data analysis.

## Overview

COREFRAME is a specialized Python framework designed for Earth science research, providing robust tools for handling complex multidimensional datasets in atmospheric, oceanic, and climate sciences.

## Features

### CoreArray
- Coordinate-aware array operations based on NumPy
- Intelligent dimension handling
- Seamless integration with NumPy's universal functions
- Support for labeled dimensions and metadata

### HDF5 Integration
- High-level interface for HDF5 files
- Automatic coordinate system management
- Advanced time dimension handling with calendar support
- Comprehensive metadata preservation

### Performance Optimization
- Result caching system for computationally intensive operations
- Parallel processing capabilities with configurable worker pools
- Compressed storage options
- Hash-based cache management

### Data Analysis Tools
- Efficient time-series operations
- Support for various calendar systems
- Area-based spatial calculations
- Geographical coordinate support
- Gridded data handling

## Installation

```bash
pip install coreframe
```

### Requirements
- Python 3.6 or higher
- NumPy
- h5py

## Quick Start

```python
import numpy as np
from coreframe import CoreArray

# Create a sample dataset
data = np.random.rand(500, 100, 100)
time = np.arange('2001-01-01', '2002-05-15', dtype='datetime64[D]')
lat = np.linspace(-90, 90, 100)
lon = np.linspace(-180, 180, 100)

# Create CoreArray with coordinates
coords = {
    'time': time,
    'lat': lat,
    'lon': lon
}
arr = CoreArray(data, coords)

# Perform operations
result = arr.apply_by_time("time", "1M", np.max, axis=0)
```

## Key Use Cases
- Climate data analysis
- Atmospheric science research
- Oceanographic studies
- Earth system modeling
- Geospatial data processing
- Environmental time series analysis

## Contributing

We welcome contributions! Please feel free to submit a Pull Request.

## License

This project is licensed under the MIT License - see the LICENSE file for details.

## Support

For support, please open an issue on the GitHub repository.

## Authors

Developed and maintained by the MetaEarth Lab.

---

For more information, please contact: hyungjun@gmail.com

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "coreframe",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "python",
    "author": "MetaEarth Lab",
    "author_email": "hyungjun@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/42/95/daf968cb59ff0fb55c0f26f771393ca607eb721576b99fa947957bcfa1cb/coreframe-1.0.3.tar.gz",
    "platform": null,
    "description": "![test results](https://github.com/kimlab/cf/actions/workflows/test.yml/badge.svg)\r\n\r\n# COREFRAME\r\n\r\n**COmmon REsearch FRAMEwork** - A Python framework for Earth science research and data analysis.\r\n\r\n## Overview\r\n\r\nCOREFRAME is a specialized Python framework designed for Earth science research, providing robust tools for handling complex multidimensional datasets in atmospheric, oceanic, and climate sciences.\r\n\r\n## Features\r\n\r\n### CoreArray\r\n- Coordinate-aware array operations based on NumPy\r\n- Intelligent dimension handling\r\n- Seamless integration with NumPy's universal functions\r\n- Support for labeled dimensions and metadata\r\n\r\n### HDF5 Integration\r\n- High-level interface for HDF5 files\r\n- Automatic coordinate system management\r\n- Advanced time dimension handling with calendar support\r\n- Comprehensive metadata preservation\r\n\r\n### Performance Optimization\r\n- Result caching system for computationally intensive operations\r\n- Parallel processing capabilities with configurable worker pools\r\n- Compressed storage options\r\n- Hash-based cache management\r\n\r\n### Data Analysis Tools\r\n- Efficient time-series operations\r\n- Support for various calendar systems\r\n- Area-based spatial calculations\r\n- Geographical coordinate support\r\n- Gridded data handling\r\n\r\n## Installation\r\n\r\n```bash\r\npip install coreframe\r\n```\r\n\r\n### Requirements\r\n- Python 3.6 or higher\r\n- NumPy\r\n- h5py\r\n\r\n## Quick Start\r\n\r\n```python\r\nimport numpy as np\r\nfrom coreframe import CoreArray\r\n\r\n# Create a sample dataset\r\ndata = np.random.rand(500, 100, 100)\r\ntime = np.arange('2001-01-01', '2002-05-15', dtype='datetime64[D]')\r\nlat = np.linspace(-90, 90, 100)\r\nlon = np.linspace(-180, 180, 100)\r\n\r\n# Create CoreArray with coordinates\r\ncoords = {\r\n    'time': time,\r\n    'lat': lat,\r\n    'lon': lon\r\n}\r\narr = CoreArray(data, coords)\r\n\r\n# Perform operations\r\nresult = arr.apply_by_time(\"time\", \"1M\", np.max, axis=0)\r\n```\r\n\r\n## Key Use Cases\r\n- Climate data analysis\r\n- Atmospheric science research\r\n- Oceanographic studies\r\n- Earth system modeling\r\n- Geospatial data processing\r\n- Environmental time series analysis\r\n\r\n## Contributing\r\n\r\nWe welcome contributions! Please feel free to submit a Pull Request.\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License - see the LICENSE file for details.\r\n\r\n## Support\r\n\r\nFor support, please open an issue on the GitHub repository.\r\n\r\n## Authors\r\n\r\nDeveloped and maintained by the MetaEarth Lab.\r\n\r\n---\r\n\r\nFor more information, please contact: hyungjun@gmail.com\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "COmmon REsearch FRAMEwork",
    "version": "1.0.3",
    "project_urls": null,
    "split_keywords": [
        "python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a6ff23788ecf09ef342008fd62e8df7ce2ea128f7f0a3f92dd50b732df8b43b9",
                "md5": "c21a8c35506ff9885e8fd26c1030c592",
                "sha256": "45234642de2d57934ecd75fc39117ebd225cb0d5508ae6e1321546c943267d55"
            },
            "downloads": -1,
            "filename": "coreframe-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c21a8c35506ff9885e8fd26c1030c592",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 18360,
            "upload_time": "2024-12-19T16:23:50",
            "upload_time_iso_8601": "2024-12-19T16:23:50.914302Z",
            "url": "https://files.pythonhosted.org/packages/a6/ff/23788ecf09ef342008fd62e8df7ce2ea128f7f0a3f92dd50b732df8b43b9/coreframe-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4295daf968cb59ff0fb55c0f26f771393ca607eb721576b99fa947957bcfa1cb",
                "md5": "63479fee713856dab1cb93f0bbba600a",
                "sha256": "08ae4ebe9e9f0ead8273beae64d2a90cafc00ba4efdbb654087cb7728935148b"
            },
            "downloads": -1,
            "filename": "coreframe-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "63479fee713856dab1cb93f0bbba600a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 20383,
            "upload_time": "2024-12-19T16:23:54",
            "upload_time_iso_8601": "2024-12-19T16:23:54.846282Z",
            "url": "https://files.pythonhosted.org/packages/42/95/daf968cb59ff0fb55c0f26f771393ca607eb721576b99fa947957bcfa1cb/coreframe-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-19 16:23:54",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "coreframe"
}
        
Elapsed time: 0.41488s