Name | correlation-analysis JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | High order correlation analysis of error models. |
upload_time | 2024-04-16 04:23:06 |
maintainer | None |
docs_url | None |
author | Yiming Zhang |
requires_python | >=3.7 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# correlation
High order correlation analysis of detector error models
## Installation
```shell
pip install correlation_analysis
```
## Usage
```python
import stim
import correlation
circuit = stim.Circuit.generated(
code_task='surface_code:rotated_memory_z',
distance=3,
rounds=2,
after_clifford_depolarization=0.01,
after_reset_flip_probability=0.01,
before_measure_flip_probability=0.01,
before_round_data_depolarization=0.01,
)
dets = circuit.compile_detector_sampler().sample(shots=1_000_000)
dem = circuit.detector_error_model(decompose_errors=True)
graph = correlation.TannerGraph(dem)
result = correlation.cal_high_order_correlations(dets, graph.hyperedges, num_workers=16)
prob_from_dem = []
prob_from_correlation = []
for hyperedge, prob in graph.hyperedge_probs.items():
prob_from_dem.append(prob)
prob_from_correlation.append(result.get(hyperedge))
print("Probabilities from detector error model:")
print(prob_from_dem)
print("Probabilities from correlation analysis:")
print(prob_from_correlation)
```
Raw data
{
"_id": null,
"home_page": null,
"name": "correlation-analysis",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": null,
"author": "Yiming Zhang",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/76/22/27c7004cc2b27d6ab08b69deda1aa51970053a14aa5e6ca7da0d762d471a/correlation_analysis-0.1.0.tar.gz",
"platform": null,
"description": "# correlation\nHigh order correlation analysis of detector error models\n\n## Installation\n\n```shell\npip install correlation_analysis\n```\n\n## Usage\n\n```python\nimport stim\n\nimport correlation\n\ncircuit = stim.Circuit.generated(\n code_task='surface_code:rotated_memory_z',\n distance=3,\n rounds=2,\n after_clifford_depolarization=0.01,\n after_reset_flip_probability=0.01,\n before_measure_flip_probability=0.01,\n before_round_data_depolarization=0.01,\n)\ndets = circuit.compile_detector_sampler().sample(shots=1_000_000)\ndem = circuit.detector_error_model(decompose_errors=True)\ngraph = correlation.TannerGraph(dem)\nresult = correlation.cal_high_order_correlations(dets, graph.hyperedges, num_workers=16)\nprob_from_dem = []\nprob_from_correlation = []\nfor hyperedge, prob in graph.hyperedge_probs.items():\n prob_from_dem.append(prob)\n prob_from_correlation.append(result.get(hyperedge))\n\nprint(\"Probabilities from detector error model:\")\nprint(prob_from_dem)\nprint(\"Probabilities from correlation analysis:\")\nprint(prob_from_correlation)\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "High order correlation analysis of error models.",
"version": "0.1.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "21b5f5e764d6b76a9c61aefcdef57668b827a634141aa976be6f412c3ff5377c",
"md5": "fa0f80d76dc52240db91c5b18e38a1fc",
"sha256": "11aed03d7bc42f7dea14f624e65d1a4db6b8b8e12add28f01f2a96c0ac2b8029"
},
"downloads": -1,
"filename": "correlation_analysis-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "fa0f80d76dc52240db91c5b18e38a1fc",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 14788,
"upload_time": "2024-04-16T04:23:04",
"upload_time_iso_8601": "2024-04-16T04:23:04.913379Z",
"url": "https://files.pythonhosted.org/packages/21/b5/f5e764d6b76a9c61aefcdef57668b827a634141aa976be6f412c3ff5377c/correlation_analysis-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "762227c7004cc2b27d6ab08b69deda1aa51970053a14aa5e6ca7da0d762d471a",
"md5": "f33e3238bc2c38c562cc10de25e8f875",
"sha256": "47e1cf4cf916ac483ccc22579691aaaabaa334cd50d6c75ac03f5a9505858858"
},
"downloads": -1,
"filename": "correlation_analysis-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "f33e3238bc2c38c562cc10de25e8f875",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 12724,
"upload_time": "2024-04-16T04:23:06",
"upload_time_iso_8601": "2024-04-16T04:23:06.432974Z",
"url": "https://files.pythonhosted.org/packages/76/22/27c7004cc2b27d6ab08b69deda1aa51970053a14aa5e6ca7da0d762d471a/correlation_analysis-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-16 04:23:06",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "correlation-analysis"
}