cosine-warmup


Namecosine-warmup JSON
Version 0.0.0 PyPI version JSON
download
home_page
SummaryCosine Annealing Linear Warmup
upload_time2023-04-15 12:34:45
maintainer
docs_urlNone
authorArturo Ghinassi
requires_python>=3.8
license
keywords torch scheduler
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Cosine Annealing Scheduler with Linear Warmup

Implementation of a Cosine Annealing Scheduler with Linear Warmup and Restarts in PyTorch. \
It has support for multiple parameters groups and minimum target learning rates. \
Also works with the Lightning Modules!

# Installation

```pip install 'git+https://github.com/santurini/cosine-annealing-linear-warmup'```

# Usage

It is important to specify the parameters groups in the optimizer instantiation as the learning rates are directly inferred from the wrapped optimizer.

#### Example: Multiple groups

```
from cosine_warmup import CosineAnnealingLinearWarmup

optimizer = torch.optim.Adam([
    {"params": first_group_params, "lr": 1e-3},
    {"params": second_group_params, "lr": 1e-4},
    ]
)

scheduler = CosineAnnealingLinearWarmup(
    optimizer = optimizer,
    min_lrs = [ 1e-5, 1e-6 ],
    first_cycle_steps = 1000,
    warmup_steps = 500,
    gamma = 0.9
    )
    
# this is equivalent to

scheduler = CosineAnnealingLinearWarmup(
    optimizer = optimizer,
    min_lrs_pow = 2,
    first_cycle_steps = 1000,
    warmup_steps = 500,
    gamma = 0.9
    )
```

#### Example: Single groups

```
from cosine_linear_warmup import CosineAnnealingLinearWarmup

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

scheduler = CosineAnnealingLinearWarmup(
    optimizer = optimizer,
    min_lrs = [ 1e-5 ],
    first_cycle_steps = 1000,
    warmup_steps = 500,
    gamma = 0.9
    )
    
# this is equivalent to

scheduler = CosineAnnealingLinearWarmup(
    optimizer = optimizer,
    min_lrs_pow = 2,
    first_cycle_steps = 1000,
    warmup_steps = 500,
    gamma = 0.9
    )
```

# Visual Example

![Unknown-2](https://user-images.githubusercontent.com/91251307/232208248-a1aa9546-39ff-4456-936a-4953a3cb0d27.png)

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "cosine-warmup",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "torch,scheduler",
    "author": "Arturo Ghinassi",
    "author_email": "ghinassiarturo8@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/b9/4d/2b586fc3c15276b57b96ba3368f4d8dde054d8ecb4a3603aaa1f5be365f4/cosine-warmup-0.0.0.tar.gz",
    "platform": null,
    "description": "# Cosine Annealing Scheduler with Linear Warmup\n\nImplementation of a Cosine Annealing Scheduler with Linear Warmup and Restarts in PyTorch. \\\nIt has support for multiple parameters groups and minimum target learning rates. \\\nAlso works with the Lightning Modules!\n\n# Installation\n\n```pip install 'git+https://github.com/santurini/cosine-annealing-linear-warmup'```\n\n# Usage\n\nIt is important to specify the parameters groups in the optimizer instantiation as the learning rates are directly inferred from the wrapped optimizer.\n\n#### Example: Multiple groups\n\n```\nfrom cosine_warmup import CosineAnnealingLinearWarmup\n\noptimizer = torch.optim.Adam([\n    {\"params\": first_group_params, \"lr\": 1e-3},\n    {\"params\": second_group_params, \"lr\": 1e-4},\n    ]\n)\n\nscheduler = CosineAnnealingLinearWarmup(\n    optimizer = optimizer,\n    min_lrs = [ 1e-5, 1e-6 ],\n    first_cycle_steps = 1000,\n    warmup_steps = 500,\n    gamma = 0.9\n    )\n    \n# this is equivalent to\n\nscheduler = CosineAnnealingLinearWarmup(\n    optimizer = optimizer,\n    min_lrs_pow = 2,\n    first_cycle_steps = 1000,\n    warmup_steps = 500,\n    gamma = 0.9\n    )\n```\n\n#### Example: Single groups\n\n```\nfrom cosine_linear_warmup import CosineAnnealingLinearWarmup\n\noptimizer = torch.optim.Adam(model.parameters(), lr=1e-3)\n\nscheduler = CosineAnnealingLinearWarmup(\n    optimizer = optimizer,\n    min_lrs = [ 1e-5 ],\n    first_cycle_steps = 1000,\n    warmup_steps = 500,\n    gamma = 0.9\n    )\n    \n# this is equivalent to\n\nscheduler = CosineAnnealingLinearWarmup(\n    optimizer = optimizer,\n    min_lrs_pow = 2,\n    first_cycle_steps = 1000,\n    warmup_steps = 500,\n    gamma = 0.9\n    )\n```\n\n# Visual Example\n\n![Unknown-2](https://user-images.githubusercontent.com/91251307/232208248-a1aa9546-39ff-4456-936a-4953a3cb0d27.png)\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Cosine Annealing Linear Warmup",
    "version": "0.0.0",
    "split_keywords": [
        "torch",
        "scheduler"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "11bfd5115a46a9546f79c7aad2f234eeab876721c2a93395623385fb40e584e9",
                "md5": "e05c757a461a0e38a7afba7e98c2d47a",
                "sha256": "8e3d4c0fa0057368282fd1c44d8cba636bb31a124ed56da38624ffe87b747748"
            },
            "downloads": -1,
            "filename": "cosine_warmup-0.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e05c757a461a0e38a7afba7e98c2d47a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 8065,
            "upload_time": "2023-04-15T12:34:44",
            "upload_time_iso_8601": "2023-04-15T12:34:44.008840Z",
            "url": "https://files.pythonhosted.org/packages/11/bf/d5115a46a9546f79c7aad2f234eeab876721c2a93395623385fb40e584e9/cosine_warmup-0.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b94d2b586fc3c15276b57b96ba3368f4d8dde054d8ecb4a3603aaa1f5be365f4",
                "md5": "3590d40610a0e81bbe85ee3f59aef98a",
                "sha256": "c7aa9c4483888a6f47471912292cbeaf96389747fea55cc8d794db865f1f336f"
            },
            "downloads": -1,
            "filename": "cosine-warmup-0.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "3590d40610a0e81bbe85ee3f59aef98a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 7534,
            "upload_time": "2023-04-15T12:34:45",
            "upload_time_iso_8601": "2023-04-15T12:34:45.768452Z",
            "url": "https://files.pythonhosted.org/packages/b9/4d/2b586fc3c15276b57b96ba3368f4d8dde054d8ecb4a3603aaa1f5be365f4/cosine-warmup-0.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-15 12:34:45",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "cosine-warmup"
}
        
Elapsed time: 0.08159s