# Unsupervised Crop-Classification using Multi-Spectral Satellite Imagery
This Project is used for crop classification using unsupervised Machine Leaning (K-Means clustering)
Installation -
Install the package (python 3.0 and above):
pip install crop-classifier
How to use -
from unsupcc import executer
# getting indices layer stack for an AOI
ie = executer.IndexExecuter()
ie.get_layer_stack()
#provide the asked input and it will return the path where layer stack is stored
# get crop clusters from layer stack of multiple dates
ce = executer.ClusterExecuter()
ce.crop_classifier(indice_stack_path, date_bands, number_of_clusters)
#It will return a raster containing clusters of multiple crops
For a manual installation get this package:
wget https://github.com/Dehaat/crop-classification
cd crop-classification
Install the package (python 3.0 and above):
python setup.py install
Raw data
{
"_id": null,
"home_page": "https://github.com/Dehaat/crop-classification",
"name": "crop-classifier",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3",
"maintainer_email": "",
"keywords": "GIS,GDAL,Remote Sensing,satellite,sentinel2,crop,crops",
"author": "Sumit Maan",
"author_email": "sumitmaansingh@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/e8/75/f4599f1cb2a79359cc85e88bcdac9979695ae68d61b170a3155c8081d009/crop-classifier-0.1.9.tar.gz",
"platform": null,
"description": "# Unsupervised Crop-Classification using Multi-Spectral Satellite Imagery\n\nThis Project is used for crop classification using unsupervised Machine Leaning (K-Means clustering)\n\nInstallation - \nInstall the package (python 3.0 and above):\n\n pip install crop-classifier\n\nHow to use - \n from unsupcc import executer\n\n # getting indices layer stack for an AOI\n ie = executer.IndexExecuter()\n ie.get_layer_stack()\n #provide the asked input and it will return the path where layer stack is stored\n\n # get crop clusters from layer stack of multiple dates\n ce = executer.ClusterExecuter()\n ce.crop_classifier(indice_stack_path, date_bands, number_of_clusters)\n #It will return a raster containing clusters of multiple crops\n\nFor a manual installation get this package:\n\n wget https://github.com/Dehaat/crop-classification\n cd crop-classification\n\nInstall the package (python 3.0 and above):\n\n python setup.py install\n",
"bugtrack_url": null,
"license": "GPLv3+",
"summary": "Unsupervised Crop Classification using Micro-spectral satellite imagery",
"version": "0.1.9",
"split_keywords": [
"gis",
"gdal",
"remote sensing",
"satellite",
"sentinel2",
"crop",
"crops"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "fd6a200e0cedc3aa3531fed787ca9912",
"sha256": "f649adb838c05f5777647bc55bcd67c6f6e553deec6e2cdd7751da82595eccce"
},
"downloads": -1,
"filename": "crop_classifier-0.1.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "fd6a200e0cedc3aa3531fed787ca9912",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3",
"size": 3844794,
"upload_time": "2022-12-21T09:58:02",
"upload_time_iso_8601": "2022-12-21T09:58:02.017518Z",
"url": "https://files.pythonhosted.org/packages/79/08/3bfc72e58420f640ab0ade0d13f75efdfc2c7b258542d7d5a2231d669fc0/crop_classifier-0.1.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "2d536b61ce3e3e77d3468a94aea7cb52",
"sha256": "66a43bf70fa3bab473b7b649e49df98cec55a0f4c52712375e6885bd2dfbd60e"
},
"downloads": -1,
"filename": "crop-classifier-0.1.9.tar.gz",
"has_sig": false,
"md5_digest": "2d536b61ce3e3e77d3468a94aea7cb52",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3",
"size": 3845085,
"upload_time": "2022-12-21T09:58:08",
"upload_time_iso_8601": "2022-12-21T09:58:08.532031Z",
"url": "https://files.pythonhosted.org/packages/e8/75/f4599f1cb2a79359cc85e88bcdac9979695ae68d61b170a3155c8081d009/crop-classifier-0.1.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-21 09:58:08",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "Dehaat",
"github_project": "crop-classification",
"lcname": "crop-classifier"
}