crop-classifier


Namecrop-classifier JSON
Version 0.1.9 PyPI version JSON
download
home_pagehttps://github.com/Dehaat/crop-classification
SummaryUnsupervised Crop Classification using Micro-spectral satellite imagery
upload_time2022-12-21 09:58:08
maintainer
docs_urlNone
authorSumit Maan
requires_python>=3
licenseGPLv3+
keywords gis gdal remote sensing satellite sentinel2 crop crops
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Unsupervised Crop-Classification using Multi-Spectral Satellite Imagery

This Project is used for crop classification using unsupervised Machine Leaning (K-Means clustering)

Installation - 
Install the package (python 3.0 and above):

    pip install crop-classifier

How to use - 
    from unsupcc import executer

    # getting indices layer stack for an AOI
        ie = executer.IndexExecuter()
        ie.get_layer_stack()
    #provide the asked input and it will return the path where layer stack is stored

    # get crop clusters from layer stack of multiple dates
        ce = executer.ClusterExecuter()
        ce.crop_classifier(indice_stack_path, date_bands, number_of_clusters)
    #It will return a raster containing clusters of multiple crops

For a manual installation get this package:

    wget https://github.com/Dehaat/crop-classification
    cd crop-classification

Install the package (python 3.0 and above):

    python setup.py install

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Dehaat/crop-classification",
    "name": "crop-classifier",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": "",
    "keywords": "GIS,GDAL,Remote Sensing,satellite,sentinel2,crop,crops",
    "author": "Sumit Maan",
    "author_email": "sumitmaansingh@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/e8/75/f4599f1cb2a79359cc85e88bcdac9979695ae68d61b170a3155c8081d009/crop-classifier-0.1.9.tar.gz",
    "platform": null,
    "description": "# Unsupervised Crop-Classification using Multi-Spectral Satellite Imagery\n\nThis Project is used for crop classification using unsupervised Machine Leaning (K-Means clustering)\n\nInstallation - \nInstall the package (python 3.0 and above):\n\n    pip install crop-classifier\n\nHow to use - \n    from unsupcc import executer\n\n    # getting indices layer stack for an AOI\n        ie = executer.IndexExecuter()\n        ie.get_layer_stack()\n    #provide the asked input and it will return the path where layer stack is stored\n\n    # get crop clusters from layer stack of multiple dates\n        ce = executer.ClusterExecuter()\n        ce.crop_classifier(indice_stack_path, date_bands, number_of_clusters)\n    #It will return a raster containing clusters of multiple crops\n\nFor a manual installation get this package:\n\n    wget https://github.com/Dehaat/crop-classification\n    cd crop-classification\n\nInstall the package (python 3.0 and above):\n\n    python setup.py install\n",
    "bugtrack_url": null,
    "license": "GPLv3+",
    "summary": "Unsupervised Crop Classification using Micro-spectral satellite imagery",
    "version": "0.1.9",
    "split_keywords": [
        "gis",
        "gdal",
        "remote sensing",
        "satellite",
        "sentinel2",
        "crop",
        "crops"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "fd6a200e0cedc3aa3531fed787ca9912",
                "sha256": "f649adb838c05f5777647bc55bcd67c6f6e553deec6e2cdd7751da82595eccce"
            },
            "downloads": -1,
            "filename": "crop_classifier-0.1.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fd6a200e0cedc3aa3531fed787ca9912",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 3844794,
            "upload_time": "2022-12-21T09:58:02",
            "upload_time_iso_8601": "2022-12-21T09:58:02.017518Z",
            "url": "https://files.pythonhosted.org/packages/79/08/3bfc72e58420f640ab0ade0d13f75efdfc2c7b258542d7d5a2231d669fc0/crop_classifier-0.1.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "2d536b61ce3e3e77d3468a94aea7cb52",
                "sha256": "66a43bf70fa3bab473b7b649e49df98cec55a0f4c52712375e6885bd2dfbd60e"
            },
            "downloads": -1,
            "filename": "crop-classifier-0.1.9.tar.gz",
            "has_sig": false,
            "md5_digest": "2d536b61ce3e3e77d3468a94aea7cb52",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 3845085,
            "upload_time": "2022-12-21T09:58:08",
            "upload_time_iso_8601": "2022-12-21T09:58:08.532031Z",
            "url": "https://files.pythonhosted.org/packages/e8/75/f4599f1cb2a79359cc85e88bcdac9979695ae68d61b170a3155c8081d009/crop-classifier-0.1.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-21 09:58:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "Dehaat",
    "github_project": "crop-classification",
    "lcname": "crop-classifier"
}
        
Elapsed time: 0.04274s