cross-attn


Namecross-attn JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/MultiModalCrossAttn
SummaryMultiModalCrossAttn - Pytorch
upload_time2023-10-03 06:03:37
maintainer
docs_urlNone
authorKye Gomez
requires_python>=3.6,<4.0
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# MultiModalCrossAttn
The open source implementation of the cross attention mechanism from the paper: "JOINTLY TRAINING LARGE AUTOREGRESSIVE MULTIMODAL MODELS"


[Paper Link](https://arxiv.org/pdf/2309.15564.pdf)

# Appreciation
* Lucidrains
* Agorians



# Install
`pip install cross-attn`

# Usage
```python
import torch
from cross_attn.main import MultiModalCrossAttention

# Test the MultiModalCrossAttention module
dim = 512  # For example
num_heads = 8

cross_attn = MultiModalCrossAttention(dim, num_heads)

Hllm_sample = torch.randn(32, dim, dim)  # Batch size = 32, Sequence length = 10
Himg_sample = torch.randn(32, dim, dim)

output = cross_attn(Hllm_sample, Himg_sample)
print(output)

print(output.shape)  # Expected: [32, 10, 512]

```



# License
MIT

# Citations
```
@misc{2309.15564,
Author = {Emanuele Aiello and Lili Yu and Yixin Nie and Armen Aghajanyan and Barlas Oguz},
Title = {Jointly Training Large Autoregressive Multimodal Models},
Year = {2023},
Eprint = {arXiv:2309.15564},
}
```
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/MultiModalCrossAttn",
    "name": "cross-attn",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6,<4.0",
    "maintainer_email": "",
    "keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/d7/f9/d92e469e7823a3b18d7141cbdf1955d19ba9871ce11913e49cf7c83a9c40/cross_attn-0.0.4.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# MultiModalCrossAttn\nThe open source implementation of the cross attention mechanism from the paper: \"JOINTLY TRAINING LARGE AUTOREGRESSIVE MULTIMODAL MODELS\"\n\n\n[Paper Link](https://arxiv.org/pdf/2309.15564.pdf)\n\n# Appreciation\n* Lucidrains\n* Agorians\n\n\n\n# Install\n`pip install cross-attn`\n\n# Usage\n```python\nimport torch\nfrom cross_attn.main import MultiModalCrossAttention\n\n# Test the MultiModalCrossAttention module\ndim = 512  # For example\nnum_heads = 8\n\ncross_attn = MultiModalCrossAttention(dim, num_heads)\n\nHllm_sample = torch.randn(32, dim, dim)  # Batch size = 32, Sequence length = 10\nHimg_sample = torch.randn(32, dim, dim)\n\noutput = cross_attn(Hllm_sample, Himg_sample)\nprint(output)\n\nprint(output.shape)  # Expected: [32, 10, 512]\n\n```\n\n\n\n# License\nMIT\n\n# Citations\n```\n@misc{2309.15564,\nAuthor = {Emanuele Aiello and Lili Yu and Yixin Nie and Armen Aghajanyan and Barlas Oguz},\nTitle = {Jointly Training Large Autoregressive Multimodal Models},\nYear = {2023},\nEprint = {arXiv:2309.15564},\n}\n```",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "MultiModalCrossAttn - Pytorch",
    "version": "0.0.4",
    "project_urls": {
        "Homepage": "https://github.com/kyegomez/MultiModalCrossAttn",
        "Repository": "https://github.com/kyegomez/MultiModalCrossAttn"
    },
    "split_keywords": [
        "artificial intelligence",
        "deep learning",
        "optimizers",
        "prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a289a691e68e84925f667d488d3b30275d820e1d81bfcb65bd05502edfed60ec",
                "md5": "dd4f1a3f041799e055a6cf76d1bacb61",
                "sha256": "6bddc93cf977f0b6dff95db5c54b34f57e9fbee959f6525e73a2b9644b84e78e"
            },
            "downloads": -1,
            "filename": "cross_attn-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dd4f1a3f041799e055a6cf76d1bacb61",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6,<4.0",
            "size": 12135,
            "upload_time": "2023-10-03T06:03:35",
            "upload_time_iso_8601": "2023-10-03T06:03:35.612149Z",
            "url": "https://files.pythonhosted.org/packages/a2/89/a691e68e84925f667d488d3b30275d820e1d81bfcb65bd05502edfed60ec/cross_attn-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d7f9d92e469e7823a3b18d7141cbdf1955d19ba9871ce11913e49cf7c83a9c40",
                "md5": "b766a1a951bdcb3be47949d518f56330",
                "sha256": "3963356be89244942a5e8972fc9adfe16c86385b766d74df4331d0d34dcea5b7"
            },
            "downloads": -1,
            "filename": "cross_attn-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "b766a1a951bdcb3be47949d518f56330",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6,<4.0",
            "size": 8950,
            "upload_time": "2023-10-03T06:03:37",
            "upload_time_iso_8601": "2023-10-03T06:03:37.209092Z",
            "url": "https://files.pythonhosted.org/packages/d7/f9/d92e469e7823a3b18d7141cbdf1955d19ba9871ce11913e49cf7c83a9c40/cross_attn-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-03 06:03:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "MultiModalCrossAttn",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "cross-attn"
}
        
Elapsed time: 0.29008s