Name | crosslinker JSON |
Version |
0.0.3
JSON |
| download |
home_page | https://github.com/markolofsen/crosslinker |
Summary | CrossLinker: A Python Library for SEO - Friendly HTML Text Processing and Keyword Linking |
upload_time | 2023-09-10 06:20:22 |
maintainer | |
docs_url | None |
author | Mark |
requires_python | >=3.6 |
license | |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
.. _crosslinker-documentation:
CrossLinker Documentation
=========================
Description
-----------
CrossLinker is a Python library designed for intelligently linking specific keywords within HTML text content. It enhances SEO (Search Engine Optimization) strategies by optimizing content with linked keywords, maintaining readability, and preventing over-optimization.
Table of Contents
-----------------
1. `Installation <#installation>`_
2. `How It Works <#how-it-works>`_
- `Initialization <#initialization>`_
- `Text Processing <#text-processing>`_
- `Randomization (Optional) <#randomization-optional>`_
- `Benefits for SEO <#benefits-for-seo>`_
3. `Usage <#usage>`_
- `Example <#example>`_
- `Parameters <#parameters>`_
- `Result <#result>`_
Installation
------------
To install CrossLinker, you can use pip:
.. code-block:: bash
pip install crosslinker
Text Processing
---------------
The library processes the HTML text and replaces keywords with links. This process includes tokenization, keyword matching, link insertion, HTML escaping, punctuation handling, and link limitation.
Randomization (Optional)
------------------------
You can choose to place links randomly (if ``random_links`` is set to True), which can help avoid over-optimization penalties from search engines.
Initialization
--------------
To get started, create an instance of the CrossLinker class by providing the following parameters:
- ``html_text``: The HTML text content you want to process. (Required)
- ``keywords``: A list of keyword-link pairs where each item is a list with the keyword and its associated link. (Required)
- ``density``: The maximum allowed length (in characters) for linked text snippets. (Default: 500)
- ``random_links``: If set to True, the library will randomly choose keywords to link each time. If False, it will consistently link the same keywords. (Default: False)
- ``stemming``: If set to True, keywords are stemmed before processing. (Default: True)
- ``language``: The language to use for stemming. Supported languages include "arabic," "danish," "dutch," "english," "finnish," "french," "german," "hungarian," "italian," "norwegian," "porter," "portuguese," "romanian," "russian," "spanish," and "swedish." (Default: "english")
- ``valid_tags``: A list of HTML tags that are considered valid for keyword linking. (Default: ["p", "h1", "h2", "h3", "h4", "h5", "h6"])
Benefits for SEO
----------------
CrossLinker offers several benefits for SEO:
- **Keyword Linking:** It automatically identifies and links keywords to relevant URLs within your HTML content, improving search engine understanding and rankings.
- **Content Optimization:** By strategically linking keywords, you can enhance the SEO value of your content and increase its visibility in search results.
- **Prevents Over-Optimization:** The library limits the number of linked keywords to maintain a natural keyword density, helping you avoid SEO penalties.
- **Maintains Readability:** Linked keywords are embedded within readable text snippets, improving the user experience and preventing content from appearing spammy.
Usage
-----
Here's an example of how to use the CrossLinker library:
Example
-------
.. code-block:: python
from crosslinker import CrossLinker
html_text = """
<h1>Enhance Your SEO with CrossLinker</h1>
<p>CrossLinker is a powerful Python library that can help boost your website's SEO performance. By intelligently linking specific keywords within your content, you can improve search engine rankings and increase organic traffic.</p>
<p>Here are some examples of keywords you can link:</p>
<ul>
<li>Search Engine Optimization</li>
<li>Keyword Research</li>
<li>On-Page SEO</li>
<li>Link Building</li>
</ul>
"""
keywords = [
[["Search Engine Optimization"], "https://example.com/seo"],
[["Keyword Research"], "https://example.com/keyword-research"],
[["On-Page SEO"], "https://example.com/on-page-seo"],
[["Link Building"], "https://example.com/link-building"],
# Add more keyword-link pairs as needed
]
# Initialize CrossLinker
seo_html = CrossLinker(
html_text=html_text,
keywords=keywords,
density=100,
random_links=False,
stemming=True,
language="english",
valid_tags=["li", "p", "h1", "h2", "h3", "h4", "h5", "h6"],
)
# Generate the processed HTML content
processed_html = seo_html.make()
print(processed_html)
Result
------
The ``processed_html`` variable will contain the HTML content with keywords replaced by links. This processed content can be used to enhance SEO strategies.
Thank you!
-----------
Please feel free to reach out if you have any further questions or need additional assistance!
Raw data
{
"_id": null,
"home_page": "https://github.com/markolofsen/crosslinker",
"name": "crosslinker",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "",
"author": "Mark",
"author_email": "markolofsen@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/81/99/3756268e2bbba4763741c3c932379c89aac5959511376ba44dab01690320/crosslinker-0.0.3.tar.gz",
"platform": null,
"description": ".. _crosslinker-documentation:\n\nCrossLinker Documentation\n=========================\n\nDescription\n-----------\n\nCrossLinker is a Python library designed for intelligently linking specific keywords within HTML text content. It enhances SEO (Search Engine Optimization) strategies by optimizing content with linked keywords, maintaining readability, and preventing over-optimization.\n\nTable of Contents\n-----------------\n\n1. `Installation <#installation>`_\n2. `How It Works <#how-it-works>`_\n - `Initialization <#initialization>`_\n - `Text Processing <#text-processing>`_\n - `Randomization (Optional) <#randomization-optional>`_\n - `Benefits for SEO <#benefits-for-seo>`_\n3. `Usage <#usage>`_\n - `Example <#example>`_\n - `Parameters <#parameters>`_\n - `Result <#result>`_\n\nInstallation\n------------\n\nTo install CrossLinker, you can use pip:\n\n.. code-block:: bash\n\n pip install crosslinker\n\nText Processing\n---------------\n\nThe library processes the HTML text and replaces keywords with links. This process includes tokenization, keyword matching, link insertion, HTML escaping, punctuation handling, and link limitation.\n\nRandomization (Optional)\n------------------------\n\nYou can choose to place links randomly (if ``random_links`` is set to True), which can help avoid over-optimization penalties from search engines.\n\nInitialization\n--------------\n\nTo get started, create an instance of the CrossLinker class by providing the following parameters:\n\n- ``html_text``: The HTML text content you want to process. (Required)\n- ``keywords``: A list of keyword-link pairs where each item is a list with the keyword and its associated link. (Required)\n- ``density``: The maximum allowed length (in characters) for linked text snippets. (Default: 500)\n- ``random_links``: If set to True, the library will randomly choose keywords to link each time. If False, it will consistently link the same keywords. (Default: False)\n- ``stemming``: If set to True, keywords are stemmed before processing. (Default: True)\n- ``language``: The language to use for stemming. Supported languages include \"arabic,\" \"danish,\" \"dutch,\" \"english,\" \"finnish,\" \"french,\" \"german,\" \"hungarian,\" \"italian,\" \"norwegian,\" \"porter,\" \"portuguese,\" \"romanian,\" \"russian,\" \"spanish,\" and \"swedish.\" (Default: \"english\")\n- ``valid_tags``: A list of HTML tags that are considered valid for keyword linking. (Default: [\"p\", \"h1\", \"h2\", \"h3\", \"h4\", \"h5\", \"h6\"])\n\nBenefits for SEO\n----------------\n\nCrossLinker offers several benefits for SEO:\n\n- **Keyword Linking:** It automatically identifies and links keywords to relevant URLs within your HTML content, improving search engine understanding and rankings.\n- **Content Optimization:** By strategically linking keywords, you can enhance the SEO value of your content and increase its visibility in search results.\n- **Prevents Over-Optimization:** The library limits the number of linked keywords to maintain a natural keyword density, helping you avoid SEO penalties.\n- **Maintains Readability:** Linked keywords are embedded within readable text snippets, improving the user experience and preventing content from appearing spammy.\n\nUsage\n-----\n\nHere's an example of how to use the CrossLinker library:\n\nExample\n-------\n\n.. code-block:: python\n\n from crosslinker import CrossLinker\n\n html_text = \"\"\"\n <h1>Enhance Your SEO with CrossLinker</h1>\n <p>CrossLinker is a powerful Python library that can help boost your website's SEO performance. By intelligently linking specific keywords within your content, you can improve search engine rankings and increase organic traffic.</p>\n <p>Here are some examples of keywords you can link:</p>\n <ul>\n <li>Search Engine Optimization</li>\n <li>Keyword Research</li>\n <li>On-Page SEO</li>\n <li>Link Building</li>\n </ul>\n \"\"\"\n\n keywords = [\n [[\"Search Engine Optimization\"], \"https://example.com/seo\"],\n [[\"Keyword Research\"], \"https://example.com/keyword-research\"],\n [[\"On-Page SEO\"], \"https://example.com/on-page-seo\"],\n [[\"Link Building\"], \"https://example.com/link-building\"],\n # Add more keyword-link pairs as needed\n ]\n\n # Initialize CrossLinker\n seo_html = CrossLinker(\n html_text=html_text,\n keywords=keywords,\n density=100,\n random_links=False,\n stemming=True,\n language=\"english\",\n valid_tags=[\"li\", \"p\", \"h1\", \"h2\", \"h3\", \"h4\", \"h5\", \"h6\"],\n )\n\n # Generate the processed HTML content\n processed_html = seo_html.make()\n\n print(processed_html)\n\nResult\n------\n\nThe ``processed_html`` variable will contain the HTML content with keywords replaced by links. This processed content can be used to enhance SEO strategies.\n\nThank you!\n-----------\n\nPlease feel free to reach out if you have any further questions or need additional assistance!\n",
"bugtrack_url": null,
"license": "",
"summary": "CrossLinker: A Python Library for SEO - Friendly HTML Text Processing and Keyword Linking",
"version": "0.0.3",
"project_urls": {
"Homepage": "https://github.com/markolofsen/crosslinker"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "32924e1d527d3b5e422168f8c055f28721a31a63b7e3cb1646f98d38ff93391f",
"md5": "90b9deb900fe74abdf03aee0aab7ba91",
"sha256": "6bc6ed1034aa7455a1422c67409755d7e4f56dc08ceb3341a1da9da40c02911c"
},
"downloads": -1,
"filename": "crosslinker-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "90b9deb900fe74abdf03aee0aab7ba91",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 11406,
"upload_time": "2023-09-10T06:20:20",
"upload_time_iso_8601": "2023-09-10T06:20:20.961719Z",
"url": "https://files.pythonhosted.org/packages/32/92/4e1d527d3b5e422168f8c055f28721a31a63b7e3cb1646f98d38ff93391f/crosslinker-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "81993756268e2bbba4763741c3c932379c89aac5959511376ba44dab01690320",
"md5": "85607f6d1be78df1f4d8c124c5dc1026",
"sha256": "b9705beedbfe1cf5c23286edb2b36c0a8cf5da04d055c0e260973403654d362e"
},
"downloads": -1,
"filename": "crosslinker-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "85607f6d1be78df1f4d8c124c5dc1026",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 11947,
"upload_time": "2023-09-10T06:20:22",
"upload_time_iso_8601": "2023-09-10T06:20:22.497206Z",
"url": "https://files.pythonhosted.org/packages/81/99/3756268e2bbba4763741c3c932379c89aac5959511376ba44dab01690320/crosslinker-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-10 06:20:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "markolofsen",
"github_project": "crosslinker",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "crosslinker"
}