# cryoCOFI
## Overview
cryoCOFI (CarbOn FIlm detector for cryo-EM images) is a script designed for cryo-EM images & cryo-ET tomograms to detect carbon films and get rid of particles inside them.
## Features
- Carbon film detection and particle screening in cryo-EM images
- Improved algorithm for edge detection (Bilateral filter + Canny detector, aka Bicanny)
- Integration with Dynamo (.doc and .tbl files) & cryoSPARC
- GPU-accelerated image processing using CuPy and CUDA
## Requirements
- Python 3.9+
- CUDA-compatible GPU
- CUDA Toolkit 11.1 or later
- NVIDIA GPU Driver supporting CUDA 12.2 or later
- CuPy, >=13.3.0
- NumPy, >=2.0.2
- pandas, >=2.2.3
## Installation
### Via git clone
1. Clone the repository:
```
git clone https://github.com/ZhenHuangLab/cryoCOFI.git
```
2. Navigate to the project directory:
```
cd cryoCOFI
```
3. Install the package:
```
pip install .
```
### Via pip
```
pip install cryoCOFI
```
## Usage
cryoCOFI can be used as a command-line tool:
```
cryoCOFI [command] [options]
```
Available commands:
- `readmrc`: Process a single MRC file
- `readdynamo`: Process Dynamo .doc and .tbl files
- `readcs`: Process cryoSPARC .cs files
For detailed usage instructions, run:
```
cryoCOFI [command] --help
```
## License
This script is licensed under [GPLv3](https://www.gnu.org/licenses/gpl-3.0.en.html).
## Contributing
Contributions to cryoCOFI are welcome! Please feel free to submit a Pull Request.
## Contact
For questions or support, please contact: zhen.victor.huang@gmail.com
For more information, visit: https://github.com/ZhenHuangLab/cryoCOFI
Raw data
{
"_id": null,
"home_page": "https://github.com/ZhenHuangLab/cryoCOFI",
"name": "cryoCOFI",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "cryo-EM, cryo-ET, carbon film, edge detection, CUDA, CuPy",
"author": "Zhen Huang",
"author_email": "zhen.victor.huang@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/bf/e2/ee0fea340bd2318e286365d497a0807b6ef67d62e2bb6e106fb221c612d4/cryocofi-1.0.2.tar.gz",
"platform": null,
"description": "# cryoCOFI\n\n## Overview\n\ncryoCOFI (CarbOn FIlm detector for cryo-EM images) is a script designed for cryo-EM images & cryo-ET tomograms to detect carbon films and get rid of particles inside them.\n\n## Features\n\n- Carbon film detection and particle screening in cryo-EM images\n- Improved algorithm for edge detection (Bilateral filter + Canny detector, aka Bicanny)\n- Integration with Dynamo (.doc and .tbl files) & cryoSPARC\n- GPU-accelerated image processing using CuPy and CUDA\n\n## Requirements\n\n- Python 3.9+\n- CUDA-compatible GPU\n - CUDA Toolkit 11.1 or later\n - NVIDIA GPU Driver supporting CUDA 12.2 or later\n- CuPy, >=13.3.0\n- NumPy, >=2.0.2\n- pandas, >=2.2.3\n\n## Installation\n\n### Via git clone\n\n1. Clone the repository:\n ```\n git clone https://github.com/ZhenHuangLab/cryoCOFI.git\n ```\n\n2. Navigate to the project directory:\n ```\n cd cryoCOFI\n ```\n\n3. Install the package:\n ```\n pip install .\n ```\n\n### Via pip\n\n```\npip install cryoCOFI\n```\n\n## Usage\n\ncryoCOFI can be used as a command-line tool:\n\n```\ncryoCOFI [command] [options]\n```\n\nAvailable commands:\n- `readmrc`: Process a single MRC file\n- `readdynamo`: Process Dynamo .doc and .tbl files\n- `readcs`: Process cryoSPARC .cs files\n\nFor detailed usage instructions, run:\n\n```\ncryoCOFI [command] --help\n```\n\n\n## License\n\nThis script is licensed under [GPLv3](https://www.gnu.org/licenses/gpl-3.0.en.html).\n\n## Contributing\n\nContributions to cryoCOFI are welcome! Please feel free to submit a Pull Request.\n\n## Contact\n\nFor questions or support, please contact: zhen.victor.huang@gmail.com\n\nFor more information, visit: https://github.com/ZhenHuangLab/cryoCOFI\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "CarbOn FIlm detector for cryo-EM images",
"version": "1.0.2",
"project_urls": {
"Bug Reports": "https://github.com/ZhenHuangLab/cryoCOFI/issues",
"Homepage": "https://github.com/ZhenHuangLab/cryoCOFI",
"Source": "https://github.com/ZhenHuangLab/cryoCOFI"
},
"split_keywords": [
"cryo-em",
" cryo-et",
" carbon film",
" edge detection",
" cuda",
" cupy"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "00227c130e57d43f92c19278d45f882f0533114c17cd5ceb17b5d42690fd0a58",
"md5": "552fafe8f53fca91eb061760476547e1",
"sha256": "33f887e07b8dd60b86261cc380d0219dae78297efb012843069c48c061269223"
},
"downloads": -1,
"filename": "cryoCOFI-1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "552fafe8f53fca91eb061760476547e1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 1730002,
"upload_time": "2024-11-17T04:08:28",
"upload_time_iso_8601": "2024-11-17T04:08:28.780988Z",
"url": "https://files.pythonhosted.org/packages/00/22/7c130e57d43f92c19278d45f882f0533114c17cd5ceb17b5d42690fd0a58/cryoCOFI-1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "bfe2ee0fea340bd2318e286365d497a0807b6ef67d62e2bb6e106fb221c612d4",
"md5": "2b04d78c53d0d68be3db210c84aec0c7",
"sha256": "1ed50c018ad6fbf44e0bb128089c1f201fff84cbb4c38ad5796672aa46ada740"
},
"downloads": -1,
"filename": "cryocofi-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "2b04d78c53d0d68be3db210c84aec0c7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 1712574,
"upload_time": "2024-11-17T04:08:31",
"upload_time_iso_8601": "2024-11-17T04:08:31.284451Z",
"url": "https://files.pythonhosted.org/packages/bf/e2/ee0fea340bd2318e286365d497a0807b6ef67d62e2bb6e106fb221c612d4/cryocofi-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-17 04:08:31",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ZhenHuangLab",
"github_project": "cryoCOFI",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "cryocofi"
}