crypto-math-utils


Namecrypto-math-utils JSON
Version 0.0.1 PyPI version JSON
download
home_page
SummaryComputes the coefficient of Bezouts identity
upload_time2023-12-12 19:55:11
maintainer
docs_urlNone
authorPratyush Prasad Sahoo
requires_python
licenseMIT
keywords gcd bezouts euclidean
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            The Extended Euclidean Algorithm is an extension of the Euclidean Algorithm for finding the greatest common divisor (GCD) of two integers. In addition to finding the GCD, the Extended Euclidean Algorithm also computes the coefficients of Bézout's identity, which are integers x and y such that:

GCD(a,b)=ax+by

This algorithm is particularly useful in various areas, including number theory and cryptography.

Change Log
==========

0.0.1 (12/12/2023)
------------------
- First Release

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "crypto-math-utils",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "gcd bezouts euclidean",
    "author": "Pratyush Prasad Sahoo",
    "author_email": "prats.sahoo2k22@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/82/5a/fc19b617492c338f2c215cddb00480431e595b332954707b469ed4ddff25/crypto_math_utils-0.0.1.tar.gz",
    "platform": null,
    "description": "The Extended Euclidean Algorithm is an extension of the Euclidean Algorithm for finding the greatest common divisor (GCD) of two integers. In addition to finding the GCD, the Extended Euclidean Algorithm also computes the coefficients of B\u00c3\u00a9zout's identity, which are integers x and y such that:\r\n\r\nGCD(a,b)=ax+by\r\n\r\nThis algorithm is particularly useful in various areas, including number theory and cryptography.\r\n\r\nChange Log\r\n==========\r\n\r\n0.0.1 (12/12/2023)\r\n------------------\r\n- First Release\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Computes the coefficient of Bezouts identity",
    "version": "0.0.1",
    "project_urls": null,
    "split_keywords": [
        "gcd",
        "bezouts",
        "euclidean"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "825afc19b617492c338f2c215cddb00480431e595b332954707b469ed4ddff25",
                "md5": "933de00002e876249206352e2198b2f5",
                "sha256": "d8419717a5b54909505feaf2a59a4a22c01f63b26572e1677c615bb6965b8d86"
            },
            "downloads": -1,
            "filename": "crypto_math_utils-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "933de00002e876249206352e2198b2f5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2623,
            "upload_time": "2023-12-12T19:55:11",
            "upload_time_iso_8601": "2023-12-12T19:55:11.076064Z",
            "url": "https://files.pythonhosted.org/packages/82/5a/fc19b617492c338f2c215cddb00480431e595b332954707b469ed4ddff25/crypto_math_utils-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-12 19:55:11",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "crypto-math-utils"
}
        
Elapsed time: 2.99545s