csbdeep


Namecsbdeep JSON
Version 0.8.1 PyPI version JSON
download
home_pagehttp://csbdeep.bioimagecomputing.com/
SummaryCSBDeep - a toolbox for Content-aware Image Restoration (CARE)
upload_time2024-10-05 23:09:06
maintainerNone
docs_urlNone
authorUwe Schmidt, Martin Weigert
requires_python>=3.6
licenseBSD 3-Clause License
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI version](https://badge.fury.io/py/csbdeep.svg)](https://pypi.org/project/csbdeep)
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/csbdeep/badges/version.svg)](https://anaconda.org/conda-forge/csbdeep)
[![Test](https://github.com/CSBDeep/CSBDeep/workflows/Test/badge.svg)](https://github.com/CSBDeep/CSBDeep/actions?query=workflow%3ATest)
[![Test (PyPI)](https://github.com/CSBDeep/CSBDeep/workflows/Test%20(PyPI)/badge.svg)](https://github.com/CSBDeep/CSBDeep/actions?query=workflow%3A%22Test+%28PyPI%29%22)

# CSBDeep – a toolbox for CARE

This is the CSBDeep Python package, which provides a toolbox for content-aware restoration of fluorescence microscopy images (CARE), based on deep learning via Keras and TensorFlow.

Please see the documentation at http://csbdeep.bioimagecomputing.com/doc/.



            

Raw data

            {
    "_id": null,
    "home_page": "http://csbdeep.bioimagecomputing.com/",
    "name": "csbdeep",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Uwe Schmidt, Martin Weigert",
    "author_email": "research@uweschmidt.org, martin.weigert@epfl.ch",
    "download_url": "https://files.pythonhosted.org/packages/9b/63/5be224471dee2f80bebd074529c2ec21190280424ca7dcf12e20f365e233/csbdeep-0.8.1.tar.gz",
    "platform": null,
    "description": "[![PyPI version](https://badge.fury.io/py/csbdeep.svg)](https://pypi.org/project/csbdeep)\n[![Anaconda-Server Badge](https://anaconda.org/conda-forge/csbdeep/badges/version.svg)](https://anaconda.org/conda-forge/csbdeep)\n[![Test](https://github.com/CSBDeep/CSBDeep/workflows/Test/badge.svg)](https://github.com/CSBDeep/CSBDeep/actions?query=workflow%3ATest)\n[![Test (PyPI)](https://github.com/CSBDeep/CSBDeep/workflows/Test%20(PyPI)/badge.svg)](https://github.com/CSBDeep/CSBDeep/actions?query=workflow%3A%22Test+%28PyPI%29%22)\n\n# CSBDeep \u2013 a toolbox for CARE\n\nThis is the CSBDeep Python package, which provides a toolbox for content-aware restoration of fluorescence microscopy images (CARE), based on deep learning via Keras and TensorFlow.\n\nPlease see the documentation at http://csbdeep.bioimagecomputing.com/doc/.\n\n\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause License",
    "summary": "CSBDeep - a toolbox for Content-aware Image Restoration (CARE)",
    "version": "0.8.1",
    "project_urls": {
        "Documentation": "http://csbdeep.bioimagecomputing.com/doc/",
        "Homepage": "http://csbdeep.bioimagecomputing.com/",
        "Repository": "https://github.com/csbdeep/csbdeep"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a9b1f58d8e828799187e18454b4f3ab3e83f40c1817b0ca06ca3011eaec05d4e",
                "md5": "78067a824b57755ab36151ba7cc7ceb7",
                "sha256": "f418a6a43db6231a07d619851126e2991eefd3d48ef5b63b9e67b5b87bdc4863"
            },
            "downloads": -1,
            "filename": "csbdeep-0.8.1-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "78067a824b57755ab36151ba7cc7ceb7",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 71606,
            "upload_time": "2024-10-05T23:09:04",
            "upload_time_iso_8601": "2024-10-05T23:09:04.643578Z",
            "url": "https://files.pythonhosted.org/packages/a9/b1/f58d8e828799187e18454b4f3ab3e83f40c1817b0ca06ca3011eaec05d4e/csbdeep-0.8.1-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9b635be224471dee2f80bebd074529c2ec21190280424ca7dcf12e20f365e233",
                "md5": "f5e96769c301fb1bef7060062b7ba275",
                "sha256": "43a9e3108a9bf9cd3cd12e87292ce84b2476309bebe220a2c20f1600682547f6"
            },
            "downloads": -1,
            "filename": "csbdeep-0.8.1.tar.gz",
            "has_sig": false,
            "md5_digest": "f5e96769c301fb1bef7060062b7ba275",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 58621,
            "upload_time": "2024-10-05T23:09:06",
            "upload_time_iso_8601": "2024-10-05T23:09:06.414778Z",
            "url": "https://files.pythonhosted.org/packages/9b/63/5be224471dee2f80bebd074529c2ec21190280424ca7dcf12e20f365e233/csbdeep-0.8.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-05 23:09:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "csbdeep",
    "github_project": "csbdeep",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "csbdeep"
}
        
Elapsed time: 0.41705s