=======
csverve
=======
.. image:: https://img.shields.io/pypi/v/csverve.svg
:target: https://pypi.python.org/pypi/csverve
.. image:: https://img.shields.io/travis/mondrian-scwgs/csverve.svg
:target: https://travis-ci.com/mondrian-scwgs/csverve
.. image:: https://readthedocs.org/projects/csverve/badge/?version=latest
:target: https://csverve.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
Csverve, pronounced like "swerve" with a "v", is a package for manipulating tabular data.
* Free software: MIT license
* Documentation: https://csverve.readthedocs.io.
Features
--------
* Take in a regular gzipped CSV file and convert it to `csverve` format
* Merge gzipped CSZ files
* Concatenate gzipped CSV files (handles large datasets)
* Rewrite a gzipped CSV file (delete headers etc.)
* Annotate - add a column based on provided dictionary
* Write pandas DataFrame to `csverve` CSV
* Read a `csverve` CSV
Requirements
------------
Every gzipped CSV file must be accompanied by a meta YAML file. The meta yaml file must have the exact name as the
gzipped CSV file, with the addition of a `.yaml` ending.
csv.gz.yaml must contain:
=========================
* column names
* dtypes for each column
* separator
* header (bool) to specify if file has header or not
Example:
.. code-block:: yaml
columns:
- dtype: int
name: prediction_id
- dtype: str
name: chromosome_1
- dtype: str
name: strand_1
header: true
sep: "\t"
Credits
-------
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
=======
History
=======
0.1.0 (2020-12-16)
------------------
* First release on PyPI.
Raw data
{
"_id": null,
"home_page": "https://github.com/mondrian-scwgs/csverve",
"name": "csverve",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "csverve",
"author": "Shah Lab",
"author_email": "todo@todo.com",
"download_url": "https://files.pythonhosted.org/packages/3e/80/a5f6c90d1fb1188accd379a0b30915cb6cdc89e13f3f3a356dfeaa98b430/csverve-0.3.8.tar.gz",
"platform": null,
"description": "=======\ncsverve\n=======\n\n\n.. image:: https://img.shields.io/pypi/v/csverve.svg\n :target: https://pypi.python.org/pypi/csverve\n\n.. image:: https://img.shields.io/travis/mondrian-scwgs/csverve.svg\n :target: https://travis-ci.com/mondrian-scwgs/csverve\n\n.. image:: https://readthedocs.org/projects/csverve/badge/?version=latest\n :target: https://csverve.readthedocs.io/en/latest/?badge=latest\n :alt: Documentation Status\n\n\n\n\nCsverve, pronounced like \"swerve\" with a \"v\", is a package for manipulating tabular data.\n\n\n* Free software: MIT license\n* Documentation: https://csverve.readthedocs.io.\n\n\nFeatures\n--------\n\n* Take in a regular gzipped CSV file and convert it to `csverve` format\n* Merge gzipped CSZ files\n* Concatenate gzipped CSV files (handles large datasets)\n* Rewrite a gzipped CSV file (delete headers etc.)\n* Annotate - add a column based on provided dictionary\n* Write pandas DataFrame to `csverve` CSV\n* Read a `csverve` CSV\n\nRequirements\n------------\nEvery gzipped CSV file must be accompanied by a meta YAML file. The meta yaml file must have the exact name as the\ngzipped CSV file, with the addition of a `.yaml` ending.\n\ncsv.gz.yaml must contain:\n=========================\n\n* column names\n* dtypes for each column\n* separator\n* header (bool) to specify if file has header or not\n\nExample:\n\n.. code-block:: yaml\n\n columns:\n - dtype: int\n name: prediction_id\n - dtype: str\n name: chromosome_1\n - dtype: str\n name: strand_1\n header: true\n sep: \"\\t\"\n\nCredits\n-------\n\nThis package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.\n\n.. _Cookiecutter: https://github.com/audreyr/cookiecutter\n.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage\n\n\n=======\nHistory\n=======\n\n0.1.0 (2020-12-16)\n------------------\n\n* First release on PyPI.\n\n\n",
"bugtrack_url": null,
"license": "MIT license",
"summary": "todo: add description",
"version": "0.3.8",
"project_urls": {
"Homepage": "https://github.com/mondrian-scwgs/csverve"
},
"split_keywords": [
"csverve"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9ea802312284160aa1722ac0bae8b86038079d6752915f3bd6b5165c63ac4c85",
"md5": "0449d57d5f55437e8254301cdeea6815",
"sha256": "6a7c661f01c5bb3f85d60d1dc0a7c3419edbdeefe755cdd40d2ede000cca9624"
},
"downloads": -1,
"filename": "csverve-0.3.8-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "0449d57d5f55437e8254301cdeea6815",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.6",
"size": 16296,
"upload_time": "2024-03-25T13:59:47",
"upload_time_iso_8601": "2024-03-25T13:59:47.759068Z",
"url": "https://files.pythonhosted.org/packages/9e/a8/02312284160aa1722ac0bae8b86038079d6752915f3bd6b5165c63ac4c85/csverve-0.3.8-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3e80a5f6c90d1fb1188accd379a0b30915cb6cdc89e13f3f3a356dfeaa98b430",
"md5": "c7fd14a45b6bf67c3a032d1f36c2522f",
"sha256": "1e61b05e2de36e5b49d47e99ec16f75d322a7f08070363f22920c73ced9cea92"
},
"downloads": -1,
"filename": "csverve-0.3.8.tar.gz",
"has_sig": false,
"md5_digest": "c7fd14a45b6bf67c3a032d1f36c2522f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 24695,
"upload_time": "2024-03-25T13:59:50",
"upload_time_iso_8601": "2024-03-25T13:59:50.140322Z",
"url": "https://files.pythonhosted.org/packages/3e/80/a5f6c90d1fb1188accd379a0b30915cb6cdc89e13f3f3a356dfeaa98b430/csverve-0.3.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-25 13:59:50",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mondrian-scwgs",
"github_project": "csverve",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "csverve"
}