csverve


Namecsverve JSON
Version 0.3.8 PyPI version JSON
download
home_pagehttps://github.com/mondrian-scwgs/csverve
Summarytodo: add description
upload_time2024-03-25 13:59:50
maintainerNone
docs_urlNone
authorShah Lab
requires_python>=3.6
licenseMIT license
keywords csverve
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            =======
csverve
=======


.. image:: https://img.shields.io/pypi/v/csverve.svg
        :target: https://pypi.python.org/pypi/csverve

.. image:: https://img.shields.io/travis/mondrian-scwgs/csverve.svg
        :target: https://travis-ci.com/mondrian-scwgs/csverve

.. image:: https://readthedocs.org/projects/csverve/badge/?version=latest
        :target: https://csverve.readthedocs.io/en/latest/?badge=latest
        :alt: Documentation Status




Csverve, pronounced like "swerve" with a "v", is a package for manipulating tabular data.


* Free software: MIT license
* Documentation: https://csverve.readthedocs.io.


Features
--------

* Take in a regular gzipped CSV file and convert it to `csverve` format
* Merge gzipped CSZ files
* Concatenate gzipped CSV files (handles large datasets)
* Rewrite a gzipped CSV file (delete headers etc.)
* Annotate - add a column based on provided dictionary
* Write pandas DataFrame to `csverve` CSV
* Read a `csverve` CSV

Requirements
------------
Every gzipped CSV file must be accompanied by a meta YAML file. The meta yaml file must have the exact name as the
gzipped CSV file, with the addition of a `.yaml` ending.

csv.gz.yaml must contain:
=========================

* column names
* dtypes for each column
* separator
* header (bool) to specify if file has header or not

Example:

.. code-block:: yaml

   columns:
    - dtype: int
      name: prediction_id
    - dtype: str
      name: chromosome_1
    - dtype: str
      name: strand_1
    header: true
    sep: "\t"

Credits
-------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage


=======
History
=======

0.1.0 (2020-12-16)
------------------

* First release on PyPI.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/mondrian-scwgs/csverve",
    "name": "csverve",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "csverve",
    "author": "Shah Lab",
    "author_email": "todo@todo.com",
    "download_url": "https://files.pythonhosted.org/packages/3e/80/a5f6c90d1fb1188accd379a0b30915cb6cdc89e13f3f3a356dfeaa98b430/csverve-0.3.8.tar.gz",
    "platform": null,
    "description": "=======\ncsverve\n=======\n\n\n.. image:: https://img.shields.io/pypi/v/csverve.svg\n        :target: https://pypi.python.org/pypi/csverve\n\n.. image:: https://img.shields.io/travis/mondrian-scwgs/csverve.svg\n        :target: https://travis-ci.com/mondrian-scwgs/csverve\n\n.. image:: https://readthedocs.org/projects/csverve/badge/?version=latest\n        :target: https://csverve.readthedocs.io/en/latest/?badge=latest\n        :alt: Documentation Status\n\n\n\n\nCsverve, pronounced like \"swerve\" with a \"v\", is a package for manipulating tabular data.\n\n\n* Free software: MIT license\n* Documentation: https://csverve.readthedocs.io.\n\n\nFeatures\n--------\n\n* Take in a regular gzipped CSV file and convert it to `csverve` format\n* Merge gzipped CSZ files\n* Concatenate gzipped CSV files (handles large datasets)\n* Rewrite a gzipped CSV file (delete headers etc.)\n* Annotate - add a column based on provided dictionary\n* Write pandas DataFrame to `csverve` CSV\n* Read a `csverve` CSV\n\nRequirements\n------------\nEvery gzipped CSV file must be accompanied by a meta YAML file. The meta yaml file must have the exact name as the\ngzipped CSV file, with the addition of a `.yaml` ending.\n\ncsv.gz.yaml must contain:\n=========================\n\n* column names\n* dtypes for each column\n* separator\n* header (bool) to specify if file has header or not\n\nExample:\n\n.. code-block:: yaml\n\n   columns:\n    - dtype: int\n      name: prediction_id\n    - dtype: str\n      name: chromosome_1\n    - dtype: str\n      name: strand_1\n    header: true\n    sep: \"\\t\"\n\nCredits\n-------\n\nThis package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.\n\n.. _Cookiecutter: https://github.com/audreyr/cookiecutter\n.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage\n\n\n=======\nHistory\n=======\n\n0.1.0 (2020-12-16)\n------------------\n\n* First release on PyPI.\n\n\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "todo: add description",
    "version": "0.3.8",
    "project_urls": {
        "Homepage": "https://github.com/mondrian-scwgs/csverve"
    },
    "split_keywords": [
        "csverve"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9ea802312284160aa1722ac0bae8b86038079d6752915f3bd6b5165c63ac4c85",
                "md5": "0449d57d5f55437e8254301cdeea6815",
                "sha256": "6a7c661f01c5bb3f85d60d1dc0a7c3419edbdeefe755cdd40d2ede000cca9624"
            },
            "downloads": -1,
            "filename": "csverve-0.3.8-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0449d57d5f55437e8254301cdeea6815",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 16296,
            "upload_time": "2024-03-25T13:59:47",
            "upload_time_iso_8601": "2024-03-25T13:59:47.759068Z",
            "url": "https://files.pythonhosted.org/packages/9e/a8/02312284160aa1722ac0bae8b86038079d6752915f3bd6b5165c63ac4c85/csverve-0.3.8-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3e80a5f6c90d1fb1188accd379a0b30915cb6cdc89e13f3f3a356dfeaa98b430",
                "md5": "c7fd14a45b6bf67c3a032d1f36c2522f",
                "sha256": "1e61b05e2de36e5b49d47e99ec16f75d322a7f08070363f22920c73ced9cea92"
            },
            "downloads": -1,
            "filename": "csverve-0.3.8.tar.gz",
            "has_sig": false,
            "md5_digest": "c7fd14a45b6bf67c3a032d1f36c2522f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 24695,
            "upload_time": "2024-03-25T13:59:50",
            "upload_time_iso_8601": "2024-03-25T13:59:50.140322Z",
            "url": "https://files.pythonhosted.org/packages/3e/80/a5f6c90d1fb1188accd379a0b30915cb6cdc89e13f3f3a356dfeaa98b430/csverve-0.3.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-25 13:59:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mondrian-scwgs",
    "github_project": "csverve",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "csverve"
}
        
Elapsed time: 3.37014s