ctxpro


Namectxpro JSON
Version 0.0.5 PyPI version JSON
download
home_pagehttps://github.com/rewicks/MultiPro
SummarySimple toolkit that extracts ambiguities in documents that require context to resolve.
upload_time2024-02-14 02:14:17
maintainer
docs_urlNone
authorRachel Wicks
requires_python>=3,<3.12
licenseApache License 2.0
keywords evaluation sets document translation context-aware translation machine translation data processing preprocessing evaluation nlp natural language processing computational linguistics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            CTXPRO is a rule-based toolkit for annotating examples of ambiguity found in parallel documents.It further provides access to the CTXPRO evaluation sets and scoring scripts.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/rewicks/MultiPro",
    "name": "ctxpro",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3,<3.12",
    "maintainer_email": "rewicks@jhu.edu",
    "keywords": "evaluation sets, document translation, context-aware translation, machine translation, data processing, preprocessing, evaluation, NLP, natural language processing, computational linguistics",
    "author": "Rachel Wicks",
    "author_email": "rewicks@jhu.edu",
    "download_url": "https://files.pythonhosted.org/packages/bc/bb/ee2f81474fad62aa4f2598e833da0fd58f586d51205f6a33b6f53cc84595/ctxpro-0.0.5.tar.gz",
    "platform": null,
    "description": "CTXPRO is a rule-based toolkit for annotating examples of ambiguity found in parallel documents.It further provides access to the CTXPRO evaluation sets and scoring scripts.\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Simple toolkit that extracts ambiguities in documents that require context to resolve.",
    "version": "0.0.5",
    "project_urls": {
        "Homepage": "https://github.com/rewicks/MultiPro"
    },
    "split_keywords": [
        "evaluation sets",
        " document translation",
        " context-aware translation",
        " machine translation",
        " data processing",
        " preprocessing",
        " evaluation",
        " nlp",
        " natural language processing",
        " computational linguistics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bcbbee2f81474fad62aa4f2598e833da0fd58f586d51205f6a33b6f53cc84595",
                "md5": "4627b927efd6369ed18afcc09b4c9bd3",
                "sha256": "173ef3f494353eae3ffaeb1cbd421d1a550e1db93368f7eafb2a43647b2b0eda"
            },
            "downloads": -1,
            "filename": "ctxpro-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "4627b927efd6369ed18afcc09b4c9bd3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3,<3.12",
            "size": 33501,
            "upload_time": "2024-02-14T02:14:17",
            "upload_time_iso_8601": "2024-02-14T02:14:17.002709Z",
            "url": "https://files.pythonhosted.org/packages/bc/bb/ee2f81474fad62aa4f2598e833da0fd58f586d51205f6a33b6f53cc84595/ctxpro-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-14 02:14:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rewicks",
    "github_project": "MultiPro",
    "github_not_found": true,
    "lcname": "ctxpro"
}
        
Elapsed time: 0.27987s