Name | cucim-cu11 JSON |
Version |
24.12.0
JSON |
| download |
home_page | None |
Summary | cuCIM - an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging. |
upload_time | 2024-12-12 23:52:14 |
maintainer | None |
docs_url | None |
author | NVIDIA Corporation |
requires_python | >=3.10 |
license | Apache 2.0 |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# <div align="left"><img src="https://rapids.ai/assets/images/rapids_logo.png" width="90px"/> cuCIM</div>
[RAPIDS](https://rapids.ai) cuCIM is an open-source, accelerated computer vision and image processing software library for multidimensional images used in biomedical, geospatial, material and life science, and remote sensing use cases.
cuCIM offers:
- Enhanced Image Processing Capabilities for large and n-dimensional tag image file format (TIFF) files
- Accelerated performance through Graphics Processing Unit (GPU)-based image processing and computer vision primitives
- A Straightforward Pythonic Interface with Matching Application Programming Interface (API) for Openslide
cuCIM supports the following formats:
- Aperio ScanScope Virtual Slide (SVS)
- Philips TIFF
- Generic Tiled, Multi-resolution RGB TIFF files with the following compression schemes:
- No Compression
- JPEG
- JPEG2000
- Lempel-Ziv-Welch (LZW)
- Deflate
**NOTE:** For the latest stable [README.md](https://github.com/rapidsai/cucim/blob/main/README.md) ensure you are on the `main` branch.
- [GTC 2022 Accelerating Storage IO to GPUs with Magnum IO [S41347]](https://events.rainfocus.com/widget/nvidia/gtcspring2022/sessioncatalog/session/1634960000577001Etxp)
- cuCIM's GDS API examples: <https://github.com/NVIDIA/MagnumIO/tree/main/gds/readers/cucim-gds>
- [SciPy 2021 cuCIM - A GPU image I/O and processing library](https://www.scipy2021.scipy.org/)
- [video](https://youtu.be/G46kOOM9xbQ)
- [GTC 2021 cuCIM: A GPU Image I/O and Processing Toolkit [S32194]](https://www.nvidia.com/en-us/on-demand/search/?facet.mimetype[]=event%20session&layout=list&page=1&q=cucim&sort=date)
- [video](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32194/)
**[Developer Page](https://developer.nvidia.com/multidimensional-image-processing)**
**Blogs**
- [Enhanced Image Analysis with Multidimensional Image Processing](https://developer.nvidia.com/blog/enhanced-image-analysis-with-multidimensional-image-processing/)
- [Accelerating Scikit-Image API with cuCIM: n-Dimensional Image Processing and IO on GPUs](https://developer.nvidia.com/blog/cucim-rapid-n-dimensional-image-processing-and-i-o-on-gpus/)
- [Accelerating Digital Pathology Pipelines with NVIDIA Claraâ„¢ Deploy](https://developer.nvidia.com/blog/accelerating-digital-pathology-pipelines-with-nvidia-clara-deploy-2/)
**Webinars**
- [cuCIM: a GPU Image IO and Processing Library](https://www.youtube.com/watch?v=G46kOOM9xbQ)
**[Documentation](https://docs.rapids.ai/api/cucim/stable)**
**Release notes** are available on our [wiki page](https://github.com/rapidsai/cucim/wiki/Release-Notes).
## Install cuCIM
### Conda
#### [Conda (stable)](https://anaconda.org/rapidsai/cucim)
```bash
conda create -n cucim -c rapidsai -c conda-forge cucim cuda-version=`<CUDA version>`
```
`<CUDA version>` should be 11.2+ (e.g., `11.2`, `12.0`, etc.)
#### [Conda (nightlies)](https://anaconda.org/rapidsai-nightly/cucim)
```bash
conda create -n cucim -c rapidsai-nightly -c conda-forge cucim cuda-version=`<CUDA version>`
```
`<CUDA version>` should be 11.2+ (e.g., `11.2`, `12.0`, etc.)
### [PyPI](https://pypi.org/project/cucim/)
Install for CUDA 12:
```bash
pip install cucim-cu12
```
Alternatively install for CUDA 11:
```bash
pip install cucim-cu11
```
### Notebooks
Please check out our [Welcome](notebooks/Welcome.ipynb) notebook ([NBViewer](https://nbviewer.org/github/rapidsai/cucim/blob/main/notebooks/Welcome.ipynb))
#### Downloading sample images
To download images used in the notebooks, please execute the following commands from the repository root folder to copy sample input images into `notebooks/input` folder:
(You will need [Docker](https://www.docker.com/) installed in your system)
```bash
./run download_testdata
```
or
```bash
mkdir -p notebooks/input
tmp_id=$(docker create gigony/svs-testdata:little-big)
docker cp $tmp_id:/input notebooks
docker rm -v ${tmp_id}
```
## Build/Install from Source
See build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).
## Contributing Guide
Contributions to cuCIM are more than welcome!
Please review the [CONTRIBUTING.md](https://github.com/rapidsai/cucim/blob/main/CONTRIBUTING.md) file for information on how to contribute code and issues to the project.
## Acknowledgments
Without awesome third-party open source software, this project wouldn't exist.
Please find [LICENSE-3rdparty.md](LICENSE-3rdparty.md) to see which third-party open source software
is used in this project.
## License
Apache-2.0 License (see [LICENSE](LICENSE) file).
Copyright (c) 2020-2022, NVIDIA CORPORATION.
Raw data
{
"_id": null,
"home_page": null,
"name": "cucim-cu11",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "NVIDIA Corporation",
"author_email": null,
"download_url": null,
"platform": null,
"description": "# <div align=\"left\"><img src=\"https://rapids.ai/assets/images/rapids_logo.png\" width=\"90px\"/> cuCIM</div>\n\n[RAPIDS](https://rapids.ai) cuCIM is an open-source, accelerated computer vision and image processing software library for multidimensional images used in biomedical, geospatial, material and life science, and remote sensing use cases.\n\ncuCIM offers:\n\n- Enhanced Image Processing Capabilities for large and n-dimensional tag image file format (TIFF) files\n- Accelerated performance through Graphics Processing Unit (GPU)-based image processing and computer vision primitives\n- A Straightforward Pythonic Interface with Matching Application Programming Interface (API) for Openslide\n\ncuCIM supports the following formats:\n\n- Aperio ScanScope Virtual Slide (SVS)\n- Philips TIFF\n- Generic Tiled, Multi-resolution RGB TIFF files with the following compression schemes:\n - No Compression\n - JPEG\n - JPEG2000\n - Lempel-Ziv-Welch (LZW)\n - Deflate\n\n**NOTE:** For the latest stable [README.md](https://github.com/rapidsai/cucim/blob/main/README.md) ensure you are on the `main` branch.\n\n- [GTC 2022 Accelerating Storage IO to GPUs with Magnum IO [S41347]](https://events.rainfocus.com/widget/nvidia/gtcspring2022/sessioncatalog/session/1634960000577001Etxp)\n - cuCIM's GDS API examples: <https://github.com/NVIDIA/MagnumIO/tree/main/gds/readers/cucim-gds>\n- [SciPy 2021 cuCIM - A GPU image I/O and processing library](https://www.scipy2021.scipy.org/)\n - [video](https://youtu.be/G46kOOM9xbQ)\n- [GTC 2021 cuCIM: A GPU Image I/O and Processing Toolkit [S32194]](https://www.nvidia.com/en-us/on-demand/search/?facet.mimetype[]=event%20session&layout=list&page=1&q=cucim&sort=date)\n - [video](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32194/)\n\n**[Developer Page](https://developer.nvidia.com/multidimensional-image-processing)**\n\n**Blogs**\n- [Enhanced Image Analysis with Multidimensional Image Processing](https://developer.nvidia.com/blog/enhanced-image-analysis-with-multidimensional-image-processing/)\n- [Accelerating Scikit-Image API with cuCIM: n-Dimensional Image Processing and IO on GPUs](https://developer.nvidia.com/blog/cucim-rapid-n-dimensional-image-processing-and-i-o-on-gpus/)\n- [Accelerating Digital Pathology Pipelines with NVIDIA Clara\u2122 Deploy](https://developer.nvidia.com/blog/accelerating-digital-pathology-pipelines-with-nvidia-clara-deploy-2/)\n\n**Webinars**\n\n- [cuCIM: a GPU Image IO and Processing Library](https://www.youtube.com/watch?v=G46kOOM9xbQ)\n\n**[Documentation](https://docs.rapids.ai/api/cucim/stable)**\n\n**Release notes** are available on our [wiki page](https://github.com/rapidsai/cucim/wiki/Release-Notes).\n\n## Install cuCIM\n\n### Conda\n\n#### [Conda (stable)](https://anaconda.org/rapidsai/cucim)\n\n```bash\nconda create -n cucim -c rapidsai -c conda-forge cucim cuda-version=`<CUDA version>`\n```\n\n`<CUDA version>` should be 11.2+ (e.g., `11.2`, `12.0`, etc.)\n\n#### [Conda (nightlies)](https://anaconda.org/rapidsai-nightly/cucim)\n\n```bash\nconda create -n cucim -c rapidsai-nightly -c conda-forge cucim cuda-version=`<CUDA version>`\n```\n\n`<CUDA version>` should be 11.2+ (e.g., `11.2`, `12.0`, etc.)\n\n### [PyPI](https://pypi.org/project/cucim/)\n\nInstall for CUDA 12:\n\n```bash\npip install cucim-cu12\n```\n\nAlternatively install for CUDA 11:\n\n```bash\npip install cucim-cu11\n```\n\n### Notebooks\n\nPlease check out our [Welcome](notebooks/Welcome.ipynb) notebook ([NBViewer](https://nbviewer.org/github/rapidsai/cucim/blob/main/notebooks/Welcome.ipynb))\n\n#### Downloading sample images\n\nTo download images used in the notebooks, please execute the following commands from the repository root folder to copy sample input images into `notebooks/input` folder:\n\n(You will need [Docker](https://www.docker.com/) installed in your system)\n\n```bash\n./run download_testdata\n```\nor\n\n```bash\nmkdir -p notebooks/input\ntmp_id=$(docker create gigony/svs-testdata:little-big)\ndocker cp $tmp_id:/input notebooks\ndocker rm -v ${tmp_id}\n```\n\n## Build/Install from Source\n\nSee build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).\n\n## Contributing Guide\n\nContributions to cuCIM are more than welcome!\nPlease review the [CONTRIBUTING.md](https://github.com/rapidsai/cucim/blob/main/CONTRIBUTING.md) file for information on how to contribute code and issues to the project.\n\n## Acknowledgments\n\nWithout awesome third-party open source software, this project wouldn't exist.\n\nPlease find [LICENSE-3rdparty.md](LICENSE-3rdparty.md) to see which third-party open source software\nis used in this project.\n\n## License\n\nApache-2.0 License (see [LICENSE](LICENSE) file).\n\nCopyright (c) 2020-2022, NVIDIA CORPORATION.\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "cuCIM - an extensible toolkit designed to provide GPU accelerated I/O, computer vision & image processing primitives for N-Dimensional images with a focus on biomedical imaging.",
"version": "24.12.0",
"project_urls": {
"Changelog": "https://github.com/rapidsai/cucim/blob/main/CHANGELOG.md",
"Documentation": "https://docs.rapids.ai/api/cucim/stable/",
"Homepage": "https://developer.nvidia.com/multidimensional-image-processing",
"Source": "https://github.com/rapidsai/cucim",
"Tracker": "https://github.com/rapidsai/cucim/issues"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "187b71e95fbcdcf8e41d1365d2ff1e9d4e3c0400db698c878efe4703508f4c36",
"md5": "bbe4f677585de0660602a456668ccd22",
"sha256": "c42a88654baebadf961c888fb6874aba2074b3ea00db3197b28288b4f3e848e4"
},
"downloads": -1,
"filename": "cucim_cu11-24.12.0-cp310-cp310-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "bbe4f677585de0660602a456668ccd22",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 5375367,
"upload_time": "2024-12-12T23:52:14",
"upload_time_iso_8601": "2024-12-12T23:52:14.918314Z",
"url": "https://files.pythonhosted.org/packages/18/7b/71e95fbcdcf8e41d1365d2ff1e9d4e3c0400db698c878efe4703508f4c36/cucim_cu11-24.12.0-cp310-cp310-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "588dcce2877973c907b3b46fb59d1f340f6747912c8fb68d43fa7698731333c6",
"md5": "ff1581504a97fa057a58ee4a4cf3ee2b",
"sha256": "558e392c633434651f200fc69036b2b8391b1c84e4f9f529f1915134ab4d1f3d"
},
"downloads": -1,
"filename": "cucim_cu11-24.12.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ff1581504a97fa057a58ee4a4cf3ee2b",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 5580870,
"upload_time": "2024-12-12T23:33:42",
"upload_time_iso_8601": "2024-12-12T23:33:42.562166Z",
"url": "https://files.pythonhosted.org/packages/58/8d/cce2877973c907b3b46fb59d1f340f6747912c8fb68d43fa7698731333c6/cucim_cu11-24.12.0-cp310-cp310-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "100bf8170c9039054295525bf12b367a2c448522d084030662fcd952f5bd8745",
"md5": "56e541c1f8fabc0861191867476605de",
"sha256": "0eb7eecd531f94a6ef81bbf26c48206770b1c165f713278b6d8f5650906ab36a"
},
"downloads": -1,
"filename": "cucim_cu11-24.12.0-cp311-cp311-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "56e541c1f8fabc0861191867476605de",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 5376907,
"upload_time": "2024-12-12T23:51:44",
"upload_time_iso_8601": "2024-12-12T23:51:44.813572Z",
"url": "https://files.pythonhosted.org/packages/10/0b/f8170c9039054295525bf12b367a2c448522d084030662fcd952f5bd8745/cucim_cu11-24.12.0-cp311-cp311-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c15cf639356f94c65d83e8206a99711747de79bfcb8711954f8dfe0207d8c514",
"md5": "eb8059b0147fd7a60fafefd8120c31e9",
"sha256": "6ea2fd4137f31a8155065dbf7b27373d1faeb9fb9514d3a1af543d13cf77ef14"
},
"downloads": -1,
"filename": "cucim_cu11-24.12.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "eb8059b0147fd7a60fafefd8120c31e9",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 5582580,
"upload_time": "2024-12-12T23:32:58",
"upload_time_iso_8601": "2024-12-12T23:32:58.305522Z",
"url": "https://files.pythonhosted.org/packages/c1/5c/f639356f94c65d83e8206a99711747de79bfcb8711954f8dfe0207d8c514/cucim_cu11-24.12.0-cp311-cp311-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e3c557641bfbe3e6c448f991d6015b415cfa563f44b4a3fb18711ba44c11c1aa",
"md5": "1099fda17056eae7d94d0fe091abe3cd",
"sha256": "efcd531622fc18f51febec471bb13a39994852db70e75b822b007875397e8092"
},
"downloads": -1,
"filename": "cucim_cu11-24.12.0-cp312-cp312-manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "1099fda17056eae7d94d0fe091abe3cd",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 5374911,
"upload_time": "2024-12-12T23:50:49",
"upload_time_iso_8601": "2024-12-12T23:50:49.724490Z",
"url": "https://files.pythonhosted.org/packages/e3/c5/57641bfbe3e6c448f991d6015b415cfa563f44b4a3fb18711ba44c11c1aa/cucim_cu11-24.12.0-cp312-cp312-manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "418ac88b5ef28c62534859c6cb6f532c8c9dbe18750d1a7457c1d3d4a600ad39",
"md5": "8d30f25ff43757d3f6e06e5472399a1a",
"sha256": "4a900aa0116cb47bde87d9661285e41317ee942437d16eececa90f78a5fedce8"
},
"downloads": -1,
"filename": "cucim_cu11-24.12.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "8d30f25ff43757d3f6e06e5472399a1a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 5580915,
"upload_time": "2024-12-12T23:32:25",
"upload_time_iso_8601": "2024-12-12T23:32:25.041633Z",
"url": "https://files.pythonhosted.org/packages/41/8a/c88b5ef28c62534859c6cb6f532c8c9dbe18750d1a7457c1d3d4a600ad39/cucim_cu11-24.12.0-cp312-cp312-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-12 23:52:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rapidsai",
"github_project": "cucim",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "cucim-cu11"
}