Name | cudaq-qec JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | Accelerated libraries for Quantum Error Correction built on CUDA-Q |
upload_time | 2024-11-18 19:17:34 |
maintainer | NVIDIA Corporation & Affiliates |
docs_url | None |
author | NVIDIA Corporation & Affiliates |
requires_python | >=3.10 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# CUDA-Q QEC Library
CUDA-Q QEC is a high-performance quantum error correction library
that leverages NVIDIA GPUs to accelerate classical decoding and
processing of quantum error correction codes. The library provides optimized
implementations of common QEC tasks including syndrome extraction,
decoding, and logical operation tracking.
**Note**: CUDA-Q QEC is currently only supported on Linux operating systems using
`x86_64` processors. CUDA-Q QEC does not require a GPU to use, but some
components are GPU-accelerated.
## Features
- Fast syndrome extraction and processing on GPUs
- Common decoders for surface codes and other topological codes
- Real-time decoding capabilities for quantum feedback
- Integration with CUDA-Q quantum program execution
## Getting Started
For detailed documentation, tutorials, and API reference, visit the
[CUDA-Q QEC Documentation](https://nvidia.github.io/cudaqx/components/qec/introduction.html).
## License
CUDA-Q QEC is an open source project. The source code is available on
[GitHub][github_link] and licensed under [Apache License
2.0](https://github.com/NVIDIA/cudaqx/blob/main/LICENSE).
[github_link]: https://github.com/NVIDIA/cudaqx/tree/main/libs/qec
Raw data
{
"_id": null,
"home_page": null,
"name": "cudaq-qec",
"maintainer": "NVIDIA Corporation & Affiliates",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "NVIDIA Corporation & Affiliates",
"author_email": null,
"download_url": null,
"platform": null,
"description": "# CUDA-Q QEC Library\n\nCUDA-Q QEC is a high-performance quantum error correction library \nthat leverages NVIDIA GPUs to accelerate classical decoding and \nprocessing of quantum error correction codes. The library provides optimized \nimplementations of common QEC tasks including syndrome extraction, \ndecoding, and logical operation tracking.\n\n**Note**: CUDA-Q QEC is currently only supported on Linux operating systems using\n`x86_64` processors. CUDA-Q QEC does not require a GPU to use, but some \ncomponents are GPU-accelerated.\n\n## Features\n\n- Fast syndrome extraction and processing on GPUs\n- Common decoders for surface codes and other topological codes\n- Real-time decoding capabilities for quantum feedback\n- Integration with CUDA-Q quantum program execution\n\n## Getting Started\n\nFor detailed documentation, tutorials, and API reference, visit the \n[CUDA-Q QEC Documentation](https://nvidia.github.io/cudaqx/components/qec/introduction.html).\n\n## License\n\nCUDA-Q QEC is an open source project. The source code is available on\n[GitHub][github_link] and licensed under [Apache License\n2.0](https://github.com/NVIDIA/cudaqx/blob/main/LICENSE). \n\n[github_link]: https://github.com/NVIDIA/cudaqx/tree/main/libs/qec",
"bugtrack_url": null,
"license": null,
"summary": "Accelerated libraries for Quantum Error Correction built on CUDA-Q",
"version": "0.1.0",
"project_urls": {
"Documentation": "https://nvidia.github.io/cudaqx/components/qec/introduction.html",
"Homepage": "https://nvidia.github.io/cudaqx",
"Repository": "https://github.com/NVIDIA/cudaqx"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "46528afab3736b53e0cb4faef8f2815ef46dbcf5a61f147d94158e4feac0e586",
"md5": "36f7b3c05a51f6cadc59da7cf6b8d029",
"sha256": "90e02ac4a286d306d1d918bd0cccc03c398c0b85f3afb0cc4dedb3f0b67642ae"
},
"downloads": -1,
"filename": "cudaq_qec-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "36f7b3c05a51f6cadc59da7cf6b8d029",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 549891,
"upload_time": "2024-11-18T19:17:34",
"upload_time_iso_8601": "2024-11-18T19:17:34.441721Z",
"url": "https://files.pythonhosted.org/packages/46/52/8afab3736b53e0cb4faef8f2815ef46dbcf5a61f147d94158e4feac0e586/cudaq_qec-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f3d1a1191b1411865cc21d43c5a0c6d60efcfc6a9dc8cb52ad34a372aef9a76e",
"md5": "97df867ac17162208499fc602ba757bb",
"sha256": "492caf28773729dbb0de2d2ea00b8a1f6290828f806f8c6a4d6d6c312719d190"
},
"downloads": -1,
"filename": "cudaq_qec-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "97df867ac17162208499fc602ba757bb",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 551813,
"upload_time": "2024-11-18T19:17:44",
"upload_time_iso_8601": "2024-11-18T19:17:44.571387Z",
"url": "https://files.pythonhosted.org/packages/f3/d1/a1191b1411865cc21d43c5a0c6d60efcfc6a9dc8cb52ad34a372aef9a76e/cudaq_qec-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ad634d546cd0be4e07c6fbc29b6a795cf6c01993695987dc34294763edbea95f",
"md5": "c9cff1b3af9bb2e52886f56ec8affa2a",
"sha256": "a082768b4c91f57d2dc43da8166ba303035bb94396d875e5991de23bc66812f6"
},
"downloads": -1,
"filename": "cudaq_qec-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "c9cff1b3af9bb2e52886f56ec8affa2a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 550197,
"upload_time": "2024-11-18T19:17:54",
"upload_time_iso_8601": "2024-11-18T19:17:54.877891Z",
"url": "https://files.pythonhosted.org/packages/ad/63/4d546cd0be4e07c6fbc29b6a795cf6c01993695987dc34294763edbea95f/cudaq_qec-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-18 19:17:34",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "NVIDIA",
"github_project": "cudaqx",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "cudaq-qec"
}