Name | cudaq-solvers JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | Accelerated libraries for quantum-classical solvers built on CUDA-Q |
upload_time | 2024-11-18 19:18:04 |
maintainer | NVIDIA Corporation & Affiliates |
docs_url | None |
author | NVIDIA Corporation & Affiliates |
requires_python | >=3.10 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# CUDA-Q Solvers Library
CUDA-Q Solvers provides GPU-accelerated implementations of common
quantum-classical hybrid algorithms and numerical routines frequently
used in quantum computing applications. The library is designed to
work seamlessly with CUDA-Q quantum programs.
**Note**: CUDA-Q Solvers is currently only supported on Linux operating systems using
`x86_64` processors. CUDA-Q Solvers does not require a GPU to use, but some
components are GPU-accelerated.
**Note**: CUDA-Q Solvers will require the presence of `libgfortran`, which is not distributed with the Python wheel, for provided classical optimizers. If `libgfortran` is not installed, you will need to install it via your distribution's package manager. On debian based systems, you can install this with `apt-get install gfortran`.
## Features
- Variational quantum eigensolvers (VQE)
- ADAPT-VQE
- Quantum approximate optimization algorithm (QAOA)
- Hamiltonian simulation routines
## Getting Started
For detailed documentation, tutorials, and API reference,
visit the [CUDA-Q Solvers Documentation](https://nvidia.github.io/cudaqx/components/solvers/introduction.html).
## License
CUDA-Q Solvers is an open source project. The source code is available on
[GitHub][github_link] and licensed under [Apache License
2.0](https://github.com/NVIDIA/cudaqx/blob/main/LICENSE).
[github_link]: https://github.com/NVIDIA/cudaqx/tree/main/libs/solvers
Raw data
{
"_id": null,
"home_page": null,
"name": "cudaq-solvers",
"maintainer": "NVIDIA Corporation & Affiliates",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "NVIDIA Corporation & Affiliates",
"author_email": null,
"download_url": null,
"platform": null,
"description": "# CUDA-Q Solvers Library\n\nCUDA-Q Solvers provides GPU-accelerated implementations of common \nquantum-classical hybrid algorithms and numerical routines frequently \nused in quantum computing applications. The library is designed to \nwork seamlessly with CUDA-Q quantum programs.\n\n**Note**: CUDA-Q Solvers is currently only supported on Linux operating systems using\n`x86_64` processors. CUDA-Q Solvers does not require a GPU to use, but some \ncomponents are GPU-accelerated.\n\n**Note**: CUDA-Q Solvers will require the presence of `libgfortran`, which is not distributed with the Python wheel, for provided classical optimizers. If `libgfortran` is not installed, you will need to install it via your distribution's package manager. On debian based systems, you can install this with `apt-get install gfortran`. \n\n## Features\n\n- Variational quantum eigensolvers (VQE)\n- ADAPT-VQE\n- Quantum approximate optimization algorithm (QAOA) \n- Hamiltonian simulation routines\n\n## Getting Started\n\nFor detailed documentation, tutorials, and API reference, \nvisit the [CUDA-Q Solvers Documentation](https://nvidia.github.io/cudaqx/components/solvers/introduction.html).\n\n## License\n\nCUDA-Q Solvers is an open source project. The source code is available on\n[GitHub][github_link] and licensed under [Apache License\n2.0](https://github.com/NVIDIA/cudaqx/blob/main/LICENSE). \n\n[github_link]: https://github.com/NVIDIA/cudaqx/tree/main/libs/solvers",
"bugtrack_url": null,
"license": null,
"summary": "Accelerated libraries for quantum-classical solvers built on CUDA-Q",
"version": "0.1.0",
"project_urls": {
"Documentation": "https://nvidia.github.io/cudaqx/components/solvers/introduction.html",
"Homepage": "https://nvidia.github.io/cudaqx",
"Repository": "https://github.com/NVIDIA/cudaqx"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "083bdc19c0d888c28095db40d9b01f7f428d5628ce4fcacc61c0d15ea49c8b3e",
"md5": "0c3eaa33eee95aa15c97e21c7de75b6f",
"sha256": "6e4b5b1f32c3ac40442e21dd14c14c5e8593f574e62ebf38f06e0ffd3c912f08"
},
"downloads": -1,
"filename": "cudaq_solvers-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "0c3eaa33eee95aa15c97e21c7de75b6f",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 1258228,
"upload_time": "2024-11-18T19:18:04",
"upload_time_iso_8601": "2024-11-18T19:18:04.044705Z",
"url": "https://files.pythonhosted.org/packages/08/3b/dc19c0d888c28095db40d9b01f7f428d5628ce4fcacc61c0d15ea49c8b3e/cudaq_solvers-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f5872c0fdbc77f6ed8cb9b0974727a1a5b97b17e7e23a7490d4d6606444e2960",
"md5": "610f9ccda7404fc4ed18a20768689862",
"sha256": "a906e40fac744df278725733d75453fd0c410b86976a924588c99d08562adcbd"
},
"downloads": -1,
"filename": "cudaq_solvers-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "610f9ccda7404fc4ed18a20768689862",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 1259520,
"upload_time": "2024-11-18T19:18:15",
"upload_time_iso_8601": "2024-11-18T19:18:15.452448Z",
"url": "https://files.pythonhosted.org/packages/f5/87/2c0fdbc77f6ed8cb9b0974727a1a5b97b17e7e23a7490d4d6606444e2960/cudaq_solvers-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6b8a51c6cbc0a48605b82b1409fdca66e90ce59bee381105aa38941844e515c3",
"md5": "ca7d9055b5d84f52c0c9b334bacd08c0",
"sha256": "663acd5b4c4042953b0c8884fb86f299428418c34ceef355d9a9ec1e1e103a98"
},
"downloads": -1,
"filename": "cudaq_solvers-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ca7d9055b5d84f52c0c9b334bacd08c0",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 1258952,
"upload_time": "2024-11-18T19:18:26",
"upload_time_iso_8601": "2024-11-18T19:18:26.311394Z",
"url": "https://files.pythonhosted.org/packages/6b/8a/51c6cbc0a48605b82b1409fdca66e90ce59bee381105aa38941844e515c3/cudaq_solvers-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-18 19:18:04",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "NVIDIA",
"github_project": "cudaqx",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "cudaq-solvers"
}