Name | cudaq-solvers JSON |
Version |
0.4.0
JSON |
| download |
home_page | None |
Summary | Accelerated libraries for quantum-classical solvers built on CUDA-Q |
upload_time | 2025-08-01 20:39:43 |
maintainer | NVIDIA Corporation & Affiliates |
docs_url | None |
author | NVIDIA Corporation & Affiliates |
requires_python | >=3.10 |
license | None |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# CUDA-Q Solvers Library
CUDA-Q Solvers provides GPU-accelerated implementations of common
quantum-classical hybrid algorithms and numerical routines frequently
used in quantum computing applications. The library is designed to
work seamlessly with CUDA-Q quantum programs.
**Note**: CUDA-Q Solvers is currently only supported on Linux operating systems
using `x86_64` processors or `aarch64`/`arm64` processors. CUDA-Q Solvers does
not require a GPU to use, but some components are GPU-accelerated.
**Note**: CUDA-Q Solvers will require the presence of `libgfortran`, which is not distributed with the Python wheel, for provided classical optimizers. If `libgfortran` is not installed, you will need to install it via your distribution's package manager. On debian based systems, you can install this with `apt-get install gfortran`.
## Features
- Variational quantum eigensolvers (VQE)
- ADAPT-VQE
- Quantum approximate optimization algorithm (QAOA)
- Hamiltonian simulation routines
Note: if you would like to use our Generative Quantum Eigensolver API, you will need
additional dependencies installed. You can install them with
`pip install cudaq-solvers[gqe]`.
## Getting Started
For detailed documentation, tutorials, and API reference,
visit the [CUDA-Q Solvers Documentation](https://nvidia.github.io/cudaqx/components/solvers/introduction.html).
## License
CUDA-Q Solvers is an open source project. The source code is available on
[GitHub][github_link] and licensed under [Apache License
2.0](https://github.com/NVIDIA/cudaqx/blob/main/LICENSE).
[github_link]: https://github.com/NVIDIA/cudaqx/tree/main/libs/solvers
Raw data
{
"_id": null,
"home_page": null,
"name": "cudaq-solvers",
"maintainer": "NVIDIA Corporation & Affiliates",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "NVIDIA Corporation & Affiliates",
"author_email": null,
"download_url": null,
"platform": null,
"description": "# CUDA-Q Solvers Library\n\nCUDA-Q Solvers provides GPU-accelerated implementations of common\nquantum-classical hybrid algorithms and numerical routines frequently\nused in quantum computing applications. The library is designed to\nwork seamlessly with CUDA-Q quantum programs.\n\n**Note**: CUDA-Q Solvers is currently only supported on Linux operating systems\nusing `x86_64` processors or `aarch64`/`arm64` processors. CUDA-Q Solvers does\nnot require a GPU to use, but some components are GPU-accelerated.\n\n**Note**: CUDA-Q Solvers will require the presence of `libgfortran`, which is not distributed with the Python wheel, for provided classical optimizers. If `libgfortran` is not installed, you will need to install it via your distribution's package manager. On debian based systems, you can install this with `apt-get install gfortran`.\n\n## Features\n\n- Variational quantum eigensolvers (VQE)\n- ADAPT-VQE\n- Quantum approximate optimization algorithm (QAOA)\n- Hamiltonian simulation routines\n\nNote: if you would like to use our Generative Quantum Eigensolver API, you will need\nadditional dependencies installed. You can install them with\n`pip install cudaq-solvers[gqe]`.\n\n## Getting Started\n\nFor detailed documentation, tutorials, and API reference,\nvisit the [CUDA-Q Solvers Documentation](https://nvidia.github.io/cudaqx/components/solvers/introduction.html).\n\n## License\n\nCUDA-Q Solvers is an open source project. The source code is available on\n[GitHub][github_link] and licensed under [Apache License\n2.0](https://github.com/NVIDIA/cudaqx/blob/main/LICENSE).\n\n[github_link]: https://github.com/NVIDIA/cudaqx/tree/main/libs/solvers\n",
"bugtrack_url": null,
"license": null,
"summary": "Accelerated libraries for quantum-classical solvers built on CUDA-Q",
"version": "0.4.0",
"project_urls": {
"Documentation": "https://nvidia.github.io/cudaqx/components/solvers/introduction.html",
"Homepage": "https://nvidia.github.io/cudaqx",
"Repository": "https://github.com/NVIDIA/cudaqx"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "9fdf6c3aa82ff72678ef78187195277fbd6ffaf1e4110d286fb9cfe613e9f1fe",
"md5": "7d05a8c7a453613147a09f37075c4d7b",
"sha256": "566c0a07d7085213363031062aa0a18f9edb07d06ec16098632f8e0bd8a94a95"
},
"downloads": -1,
"filename": "cudaq_solvers-0.4.0-cp310-cp310-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "7d05a8c7a453613147a09f37075c4d7b",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 1226806,
"upload_time": "2025-08-01T20:39:43",
"upload_time_iso_8601": "2025-08-01T20:39:43.612011Z",
"url": "https://files.pythonhosted.org/packages/9f/df/6c3aa82ff72678ef78187195277fbd6ffaf1e4110d286fb9cfe613e9f1fe/cudaq_solvers-0.4.0-cp310-cp310-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "aaa7966f9a52da1aa51281680b3152affb60f1c2f35f9d561cf21e463de06dbc",
"md5": "1ba2586833ac72f9977d247da7a75574",
"sha256": "0e0482b66c4314f3398e7cb7c685e47932f3c83d4af046009eb191706b3bed61"
},
"downloads": -1,
"filename": "cudaq_solvers-0.4.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "1ba2586833ac72f9977d247da7a75574",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 1361273,
"upload_time": "2025-08-01T20:39:45",
"upload_time_iso_8601": "2025-08-01T20:39:45.320881Z",
"url": "https://files.pythonhosted.org/packages/aa/a7/966f9a52da1aa51281680b3152affb60f1c2f35f9d561cf21e463de06dbc/cudaq_solvers-0.4.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "69de30fb637c288213d0b7266afa57548aa63d59e504a88b0d81d22ffccd0116",
"md5": "e1efe7bad1070543baf076825c48a4fe",
"sha256": "32952f7253e661ed5d3e30fa43e0b96c541a56dbe1d6d43f1efe56a53fdcf38d"
},
"downloads": -1,
"filename": "cudaq_solvers-0.4.0-cp311-cp311-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "e1efe7bad1070543baf076825c48a4fe",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 1228101,
"upload_time": "2025-08-01T20:39:46",
"upload_time_iso_8601": "2025-08-01T20:39:46.702849Z",
"url": "https://files.pythonhosted.org/packages/69/de/30fb637c288213d0b7266afa57548aa63d59e504a88b0d81d22ffccd0116/cudaq_solvers-0.4.0-cp311-cp311-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "36a28eb8f98e8d0ffa065782dc455b87c23f6b366878a92d6f63aed22e53d173",
"md5": "9508372e1724eba31b58a86bd63333aa",
"sha256": "8473989d6b51e4cfb3c6ce5fac0f5d09d944cca1f5ef8cd01127913938eea3de"
},
"downloads": -1,
"filename": "cudaq_solvers-0.4.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "9508372e1724eba31b58a86bd63333aa",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 1362416,
"upload_time": "2025-08-01T20:39:48",
"upload_time_iso_8601": "2025-08-01T20:39:48.125969Z",
"url": "https://files.pythonhosted.org/packages/36/a2/8eb8f98e8d0ffa065782dc455b87c23f6b366878a92d6f63aed22e53d173/cudaq_solvers-0.4.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "dc94e41c9a704e76624d97d451463af0edccbabea1ccaedf6beef61679133fa9",
"md5": "00beeaef91f24f049f645c925737e27b",
"sha256": "f89e5ff37d20fb979b3a9efd48df4880ad05cbd548235b1cb09f95f32b4a1e73"
},
"downloads": -1,
"filename": "cudaq_solvers-0.4.0-cp312-cp312-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "00beeaef91f24f049f645c925737e27b",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 1226286,
"upload_time": "2025-08-01T20:39:49",
"upload_time_iso_8601": "2025-08-01T20:39:49.304023Z",
"url": "https://files.pythonhosted.org/packages/dc/94/e41c9a704e76624d97d451463af0edccbabea1ccaedf6beef61679133fa9/cudaq_solvers-0.4.0-cp312-cp312-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a946c35c53264749f77f974a1bd9d6d65a6ed7e6733727e66c9e8c4e0148fe56",
"md5": "8edad268945a3f1cef658b360be3b84d",
"sha256": "6638d0f0b8dbff7c3f22afcf01d50f43f4ef99944b3c1b4c2a2eb7f3c44b36ce"
},
"downloads": -1,
"filename": "cudaq_solvers-0.4.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "8edad268945a3f1cef658b360be3b84d",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 1360608,
"upload_time": "2025-08-01T20:39:51",
"upload_time_iso_8601": "2025-08-01T20:39:51.014362Z",
"url": "https://files.pythonhosted.org/packages/a9/46/c35c53264749f77f974a1bd9d6d65a6ed7e6733727e66c9e8c4e0148fe56/cudaq_solvers-0.4.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1ef47ef8bad49184a51781dc5c05b85b971dc73df6db1960f850d32eec1e947b",
"md5": "3a1c0cee10e7bdd111044543b56297b4",
"sha256": "c053b71db6b6e753225a2ff418633804eb5aebd719b402085b47e127814108de"
},
"downloads": -1,
"filename": "cudaq_solvers-0.4.0-cp313-cp313-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "3a1c0cee10e7bdd111044543b56297b4",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.10",
"size": 1227309,
"upload_time": "2025-08-01T20:39:52",
"upload_time_iso_8601": "2025-08-01T20:39:52.478081Z",
"url": "https://files.pythonhosted.org/packages/1e/f4/7ef8bad49184a51781dc5c05b85b971dc73df6db1960f850d32eec1e947b/cudaq_solvers-0.4.0-cp313-cp313-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "02d08d1acf22de47f995548a2831861bf1ec537d569489f5e145485cbadadb4e",
"md5": "7286f909ec18c2e77de6fb243abf9f23",
"sha256": "9742f42e4ad8c338069b673a895b46d3d49ab9c5c1421d477cc7182460a098c1"
},
"downloads": -1,
"filename": "cudaq_solvers-0.4.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "7286f909ec18c2e77de6fb243abf9f23",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.10",
"size": 1361348,
"upload_time": "2025-08-01T20:39:53",
"upload_time_iso_8601": "2025-08-01T20:39:53.994690Z",
"url": "https://files.pythonhosted.org/packages/02/d0/8d1acf22de47f995548a2831861bf1ec537d569489f5e145485cbadadb4e/cudaq_solvers-0.4.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-01 20:39:43",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "NVIDIA",
"github_project": "cudaqx",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "cudaq-solvers"
}