cudaq-solvers


Namecudaq-solvers JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryAccelerated libraries for quantum-classical solvers built on CUDA-Q
upload_time2024-11-18 19:18:04
maintainerNVIDIA Corporation & Affiliates
docs_urlNone
authorNVIDIA Corporation & Affiliates
requires_python>=3.10
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # CUDA-Q Solvers Library

CUDA-Q Solvers provides GPU-accelerated implementations of common 
quantum-classical hybrid algorithms and numerical routines frequently 
used in quantum computing applications. The library is designed to 
work seamlessly with CUDA-Q quantum programs.

**Note**: CUDA-Q Solvers is currently only supported on Linux operating systems using
`x86_64` processors. CUDA-Q Solvers does not require a GPU to use, but some 
components are GPU-accelerated.

**Note**: CUDA-Q Solvers will require the presence of `libgfortran`, which is not distributed with the Python wheel, for provided classical optimizers. If `libgfortran` is not installed, you will need to install it via your distribution's package manager. On debian based systems, you can install this with `apt-get install gfortran`. 

## Features

- Variational quantum eigensolvers (VQE)
- ADAPT-VQE
- Quantum approximate optimization algorithm (QAOA) 
- Hamiltonian simulation routines

## Getting Started

For detailed documentation, tutorials, and API reference, 
visit the [CUDA-Q Solvers Documentation](https://nvidia.github.io/cudaqx/components/solvers/introduction.html).

## License

CUDA-Q Solvers is an open source project. The source code is available on
[GitHub][github_link] and licensed under [Apache License
2.0](https://github.com/NVIDIA/cudaqx/blob/main/LICENSE). 

[github_link]: https://github.com/NVIDIA/cudaqx/tree/main/libs/solvers
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cudaq-solvers",
    "maintainer": "NVIDIA Corporation & Affiliates",
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "NVIDIA Corporation & Affiliates",
    "author_email": null,
    "download_url": null,
    "platform": null,
    "description": "# CUDA-Q Solvers Library\n\nCUDA-Q Solvers provides GPU-accelerated implementations of common \nquantum-classical hybrid algorithms and numerical routines frequently \nused in quantum computing applications. The library is designed to \nwork seamlessly with CUDA-Q quantum programs.\n\n**Note**: CUDA-Q Solvers is currently only supported on Linux operating systems using\n`x86_64` processors. CUDA-Q Solvers does not require a GPU to use, but some \ncomponents are GPU-accelerated.\n\n**Note**: CUDA-Q Solvers will require the presence of `libgfortran`, which is not distributed with the Python wheel, for provided classical optimizers. If `libgfortran` is not installed, you will need to install it via your distribution's package manager. On debian based systems, you can install this with `apt-get install gfortran`. \n\n## Features\n\n- Variational quantum eigensolvers (VQE)\n- ADAPT-VQE\n- Quantum approximate optimization algorithm (QAOA) \n- Hamiltonian simulation routines\n\n## Getting Started\n\nFor detailed documentation, tutorials, and API reference, \nvisit the [CUDA-Q Solvers Documentation](https://nvidia.github.io/cudaqx/components/solvers/introduction.html).\n\n## License\n\nCUDA-Q Solvers is an open source project. The source code is available on\n[GitHub][github_link] and licensed under [Apache License\n2.0](https://github.com/NVIDIA/cudaqx/blob/main/LICENSE). \n\n[github_link]: https://github.com/NVIDIA/cudaqx/tree/main/libs/solvers",
    "bugtrack_url": null,
    "license": null,
    "summary": "Accelerated libraries for quantum-classical solvers built on CUDA-Q",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://nvidia.github.io/cudaqx/components/solvers/introduction.html",
        "Homepage": "https://nvidia.github.io/cudaqx",
        "Repository": "https://github.com/NVIDIA/cudaqx"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "083bdc19c0d888c28095db40d9b01f7f428d5628ce4fcacc61c0d15ea49c8b3e",
                "md5": "0c3eaa33eee95aa15c97e21c7de75b6f",
                "sha256": "6e4b5b1f32c3ac40442e21dd14c14c5e8593f574e62ebf38f06e0ffd3c912f08"
            },
            "downloads": -1,
            "filename": "cudaq_solvers-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "0c3eaa33eee95aa15c97e21c7de75b6f",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.10",
            "size": 1258228,
            "upload_time": "2024-11-18T19:18:04",
            "upload_time_iso_8601": "2024-11-18T19:18:04.044705Z",
            "url": "https://files.pythonhosted.org/packages/08/3b/dc19c0d888c28095db40d9b01f7f428d5628ce4fcacc61c0d15ea49c8b3e/cudaq_solvers-0.1.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f5872c0fdbc77f6ed8cb9b0974727a1a5b97b17e7e23a7490d4d6606444e2960",
                "md5": "610f9ccda7404fc4ed18a20768689862",
                "sha256": "a906e40fac744df278725733d75453fd0c410b86976a924588c99d08562adcbd"
            },
            "downloads": -1,
            "filename": "cudaq_solvers-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "610f9ccda7404fc4ed18a20768689862",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.10",
            "size": 1259520,
            "upload_time": "2024-11-18T19:18:15",
            "upload_time_iso_8601": "2024-11-18T19:18:15.452448Z",
            "url": "https://files.pythonhosted.org/packages/f5/87/2c0fdbc77f6ed8cb9b0974727a1a5b97b17e7e23a7490d4d6606444e2960/cudaq_solvers-0.1.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6b8a51c6cbc0a48605b82b1409fdca66e90ce59bee381105aa38941844e515c3",
                "md5": "ca7d9055b5d84f52c0c9b334bacd08c0",
                "sha256": "663acd5b4c4042953b0c8884fb86f299428418c34ceef355d9a9ec1e1e103a98"
            },
            "downloads": -1,
            "filename": "cudaq_solvers-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "ca7d9055b5d84f52c0c9b334bacd08c0",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.10",
            "size": 1258952,
            "upload_time": "2024-11-18T19:18:26",
            "upload_time_iso_8601": "2024-11-18T19:18:26.311394Z",
            "url": "https://files.pythonhosted.org/packages/6b/8a/51c6cbc0a48605b82b1409fdca66e90ce59bee381105aa38941844e515c3/cudaq_solvers-0.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-18 19:18:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NVIDIA",
    "github_project": "cudaqx",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "cudaq-solvers"
}
        
Elapsed time: 0.35950s