Name | cudf-cu11 JSON |
Version |
24.10.1
JSON |
| download |
home_page | None |
Summary | cuDF - GPU Dataframe |
upload_time | 2024-10-10 14:56:42 |
maintainer | None |
docs_url | None |
author | NVIDIA Corporation |
requires_python | >=3.10 |
license | Apache 2.0 |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# <div align="left"><img src="img/rapids_logo.png" width="90px"/> cuDF - GPU DataFrames</div>
## 📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!
cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library
for loading, joining, aggregating, filtering, and otherwise
manipulating data. cuDF leverages
[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a
blazing-fast C++/CUDA dataframe library and the [Apache
Arrow](https://arrow.apache.org/) columnar format to provide a
GPU-accelerated pandas API.
You can import `cudf` directly and use it like `pandas`:
```python
import cudf
tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```
Or, you can use cuDF as a no-code-change accelerator for pandas, using
[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).
`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for
supported operations and falling back to pandas when needed:
```python
%load_ext cudf.pandas # pandas operations now use the GPU!
import pandas as pd
tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```
## Resources
- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!
- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.
- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)
- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)
- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.
See the [RAPIDS install page](https://docs.rapids.ai/install) for
the most up-to-date information and commands for installing cuDF
and other RAPIDS packages.
## Installation
### CUDA/GPU requirements
* CUDA 11.2+
* NVIDIA driver 450.80.02+
* Volta architecture or better (Compute Capability >=7.0)
### Pip
cuDF can be installed via `pip` from the NVIDIA Python Package Index.
Be sure to select the appropriate cuDF package depending
on the major version of CUDA available in your environment:
For CUDA 11.x:
```bash
pip install --extra-index-url=https://pypi.nvidia.com cudf-cu11
```
For CUDA 12.x:
```bash
pip install --extra-index-url=https://pypi.nvidia.com cudf-cu12
```
### Conda
cuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:
```bash
conda install -c rapidsai -c conda-forge -c nvidia \
cudf=24.10 python=3.12 cuda-version=12.5
```
We also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD
of our latest development branch.
Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.
See the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.
## Build/Install from Source
See build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).
## Contributing
Please see our [guide for contributing to cuDF](CONTRIBUTING.md).
Raw data
{
"_id": null,
"home_page": null,
"name": "cudf-cu11",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "NVIDIA Corporation",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/79/90/543dda86ad627f42fc9283a24d1a81224a4b775e287871d3b14eb9f5def2/cudf_cu11-24.10.1.tar.gz",
"platform": null,
"description": "# <div align=\"left\"><img src=\"img/rapids_logo.png\" width=\"90px\"/> cuDF - GPU DataFrames</div>\n\n## \ud83d\udce2 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!\n\ncuDF (pronounced \"KOO-dee-eff\") is a GPU DataFrame library\nfor loading, joining, aggregating, filtering, and otherwise\nmanipulating data. cuDF leverages\n[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a\nblazing-fast C++/CUDA dataframe library and the [Apache\nArrow](https://arrow.apache.org/) columnar format to provide a\nGPU-accelerated pandas API.\n\nYou can import `cudf` directly and use it like `pandas`:\n\n```python\nimport cudf\n\ntips_df = cudf.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\nOr, you can use cuDF as a no-code-change accelerator for pandas, using\n[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).\n`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for\nsupported operations and falling back to pandas when needed:\n\n```python\n%load_ext cudf.pandas # pandas operations now use the GPU!\n\nimport pandas as pd\n\ntips_df = pd.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\n## Resources\n\n- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!\n- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.\n- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)\n- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)\n- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.\n\nSee the [RAPIDS install page](https://docs.rapids.ai/install) for\nthe most up-to-date information and commands for installing cuDF\nand other RAPIDS packages.\n\n## Installation\n\n### CUDA/GPU requirements\n\n* CUDA 11.2+\n* NVIDIA driver 450.80.02+\n* Volta architecture or better (Compute Capability >=7.0)\n\n### Pip\n\ncuDF can be installed via `pip` from the NVIDIA Python Package Index.\nBe sure to select the appropriate cuDF package depending\non the major version of CUDA available in your environment:\n\nFor CUDA 11.x:\n\n```bash\npip install --extra-index-url=https://pypi.nvidia.com cudf-cu11\n```\n\nFor CUDA 12.x:\n\n```bash\npip install --extra-index-url=https://pypi.nvidia.com cudf-cu12\n```\n\n### Conda\n\ncuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:\n\n```bash\nconda install -c rapidsai -c conda-forge -c nvidia \\\n cudf=24.10 python=3.12 cuda-version=12.5\n```\n\nWe also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD\nof our latest development branch.\n\nNote: cuDF is supported only on Linux, and with Python versions 3.10 and later.\n\nSee the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.\n\n## Build/Install from Source\nSee build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).\n\n## Contributing\n\nPlease see our [guide for contributing to cuDF](CONTRIBUTING.md).\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "cuDF - GPU Dataframe",
"version": "24.10.1",
"project_urls": {
"Documentation": "https://docs.rapids.ai/api/cudf/stable/",
"Homepage": "https://github.com/rapidsai/cudf"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7990543dda86ad627f42fc9283a24d1a81224a4b775e287871d3b14eb9f5def2",
"md5": "8d5bba2809e147139a75ca0b5a5e5f44",
"sha256": "306b819271e99cc4d93cfa1c9e77cb9b657c3dfb83f1976e56120d9ac8573504"
},
"downloads": -1,
"filename": "cudf_cu11-24.10.1.tar.gz",
"has_sig": false,
"md5_digest": "8d5bba2809e147139a75ca0b5a5e5f44",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 2582,
"upload_time": "2024-10-10T14:56:42",
"upload_time_iso_8601": "2024-10-10T14:56:42.889996Z",
"url": "https://files.pythonhosted.org/packages/79/90/543dda86ad627f42fc9283a24d1a81224a4b775e287871d3b14eb9f5def2/cudf_cu11-24.10.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-10 14:56:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rapidsai",
"github_project": "cudf",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "cudf-cu11"
}