| Name | cudf-cu12 JSON |
| Version |
25.10.0
JSON |
| download |
| home_page | None |
| Summary | cuDF - GPU Dataframe |
| upload_time | 2025-10-09 01:13:55 |
| maintainer | None |
| docs_url | None |
| author | NVIDIA Corporation |
| requires_python | >=3.10 |
| license | Apache-2.0 |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# <div align="left"><img src="img/rapids_logo.png" width="90px"/> cuDF - GPU DataFrames</div>
## 📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!
cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library
for loading, joining, aggregating, filtering, and otherwise
manipulating data. cuDF leverages
[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a
blazing-fast C++/CUDA dataframe library and the [Apache
Arrow](https://arrow.apache.org/) columnar format to provide a
GPU-accelerated pandas API.
You can import `cudf` directly and use it like `pandas`:
```python
import cudf
tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```
Or, you can use cuDF as a no-code-change accelerator for pandas, using
[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).
`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for
supported operations and falling back to pandas when needed:
```python
%load_ext cudf.pandas # pandas operations now use the GPU!
import pandas as pd
tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```
## Resources
- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!
- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.
- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)
- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)
- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.
See the [RAPIDS install page](https://docs.rapids.ai/install) for
the most up-to-date information and commands for installing cuDF
and other RAPIDS packages.
## Installation
### CUDA/GPU requirements
* CUDA 12.0+ with a compatible NVIDIA driver
* Volta architecture or better (Compute Capability >=7.0)
### Pip
cuDF can be installed via `pip` from the NVIDIA Python Package Index.
Be sure to select the appropriate cuDF package depending
on the major version of CUDA available in your environment:
```bash
# CUDA 13
pip install cudf-cu13
# CUDA 12
pip install cudf-cu12
```
### Conda
cuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:
```bash
# CUDA 13
conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=13.0
# CUDA 12
conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=12.9
```
We also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD
of our latest development branch.
Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.
See the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.
## Build/Install from Source
See build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).
## Contributing
Please see our [guide for contributing to cuDF](CONTRIBUTING.md).
Raw data
{
"_id": null,
"home_page": null,
"name": "cudf-cu12",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "NVIDIA Corporation",
"author_email": null,
"download_url": null,
"platform": null,
"description": "# <div align=\"left\"><img src=\"img/rapids_logo.png\" width=\"90px\"/> cuDF - GPU DataFrames</div>\n\n## \ud83d\udce2 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!\n\ncuDF (pronounced \"KOO-dee-eff\") is a GPU DataFrame library\nfor loading, joining, aggregating, filtering, and otherwise\nmanipulating data. cuDF leverages\n[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a\nblazing-fast C++/CUDA dataframe library and the [Apache\nArrow](https://arrow.apache.org/) columnar format to provide a\nGPU-accelerated pandas API.\n\nYou can import `cudf` directly and use it like `pandas`:\n\n```python\nimport cudf\n\ntips_df = cudf.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\nOr, you can use cuDF as a no-code-change accelerator for pandas, using\n[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).\n`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for\nsupported operations and falling back to pandas when needed:\n\n```python\n%load_ext cudf.pandas # pandas operations now use the GPU!\n\nimport pandas as pd\n\ntips_df = pd.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\n## Resources\n\n- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!\n- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.\n- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)\n- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)\n- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.\n\nSee the [RAPIDS install page](https://docs.rapids.ai/install) for\nthe most up-to-date information and commands for installing cuDF\nand other RAPIDS packages.\n\n## Installation\n\n### CUDA/GPU requirements\n\n* CUDA 12.0+ with a compatible NVIDIA driver\n* Volta architecture or better (Compute Capability >=7.0)\n\n### Pip\n\ncuDF can be installed via `pip` from the NVIDIA Python Package Index.\nBe sure to select the appropriate cuDF package depending\non the major version of CUDA available in your environment:\n\n```bash\n# CUDA 13\npip install cudf-cu13\n\n# CUDA 12\npip install cudf-cu12\n```\n\n### Conda\n\ncuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:\n\n```bash\n# CUDA 13\nconda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=13.0\n\n# CUDA 12\nconda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=12.9\n```\n\nWe also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD\nof our latest development branch.\n\nNote: cuDF is supported only on Linux, and with Python versions 3.10 and later.\n\nSee the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.\n\n## Build/Install from Source\nSee build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).\n\n## Contributing\n\nPlease see our [guide for contributing to cuDF](CONTRIBUTING.md).\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "cuDF - GPU Dataframe",
"version": "25.10.0",
"project_urls": {
"Documentation": "https://docs.rapids.ai/api/cudf/stable/",
"Homepage": "https://github.com/rapidsai/cudf"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "476a1d9ce7ec08618e17845cc1416479893fe984a79e2ebdb04b2c790addef2b",
"md5": "9638fd68e1db43f229170ab0ef2dff84",
"sha256": "72cb209847adb4299a82b143bb2420ab2da90f5c9aca127ca3e01c78b0efe570"
},
"downloads": -1,
"filename": "cudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "9638fd68e1db43f229170ab0ef2dff84",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 2601093,
"upload_time": "2025-10-09T01:13:55",
"upload_time_iso_8601": "2025-10-09T01:13:55.092594Z",
"url": "https://files.pythonhosted.org/packages/47/6a/1d9ce7ec08618e17845cc1416479893fe984a79e2ebdb04b2c790addef2b/cudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4902c0d2ddd8d14cabb5b5404507632b1e6fc7cd6e856a7684917b4d86553fb9",
"md5": "ba113058d6708e8e912ce9a79638ce20",
"sha256": "130ef1f0d90cae33356454ae92a51540dcd7074779b5e1d95b1a2f979d14cdfa"
},
"downloads": -1,
"filename": "cudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "ba113058d6708e8e912ce9a79638ce20",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 2603807,
"upload_time": "2025-10-09T01:22:04",
"upload_time_iso_8601": "2025-10-09T01:22:04.802535Z",
"url": "https://files.pythonhosted.org/packages/49/02/c0d2ddd8d14cabb5b5404507632b1e6fc7cd6e856a7684917b4d86553fb9/cudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ff2bed770f0d4efa7a30553dd53feb683d8d38ad02f0bcce614d0ccc2f87419c",
"md5": "ca8e70854911a5959781bedd8cb43b90",
"sha256": "50d4ea5d09e7751a5676f517cf62eb8823adca7c51270de4cd82a7ab1a070d0c"
},
"downloads": -1,
"filename": "cudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "ca8e70854911a5959781bedd8cb43b90",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 2601458,
"upload_time": "2025-10-09T01:10:24",
"upload_time_iso_8601": "2025-10-09T01:10:24.421828Z",
"url": "https://files.pythonhosted.org/packages/ff/2b/ed770f0d4efa7a30553dd53feb683d8d38ad02f0bcce614d0ccc2f87419c/cudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "05eb6e32b65b608cf8d12577dd9373f73d61d283c269f78bed8e9352fdb89a28",
"md5": "0193544a81ae8967afa1c442ff0f5179",
"sha256": "20e4fed7db9ea6387e066d87073eff8da71e3fd45db8c98acbced88e87fe2c65"
},
"downloads": -1,
"filename": "cudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "0193544a81ae8967afa1c442ff0f5179",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 2603948,
"upload_time": "2025-10-09T01:21:41",
"upload_time_iso_8601": "2025-10-09T01:21:41.335014Z",
"url": "https://files.pythonhosted.org/packages/05/eb/6e32b65b608cf8d12577dd9373f73d61d283c269f78bed8e9352fdb89a28/cudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "38c0d6db2a7ecafdf2ba321aa0f5a74f72c40788c9d008c1e1ea91239317f7be",
"md5": "5ecb14c6569a5fa95e1c3541fa849216",
"sha256": "edd34017b6f82cc971bd0f0a7647df6752204a9c461ff03ee6284d8b218851be"
},
"downloads": -1,
"filename": "cudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "5ecb14c6569a5fa95e1c3541fa849216",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 2597863,
"upload_time": "2025-10-09T01:11:19",
"upload_time_iso_8601": "2025-10-09T01:11:19.397549Z",
"url": "https://files.pythonhosted.org/packages/38/c0/d6db2a7ecafdf2ba321aa0f5a74f72c40788c9d008c1e1ea91239317f7be/cudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "03163d9946e1e903c22ec57d1f93a9d8fdf1822de8bf88528c1e502fad3f5692",
"md5": "60cec02308b34d315a3bac146851688b",
"sha256": "33fb682431b9cd812c980bad8d6e6abc07182e8ed8c665a6faad92ba9ad9f3dc"
},
"downloads": -1,
"filename": "cudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "60cec02308b34d315a3bac146851688b",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 2601545,
"upload_time": "2025-10-09T01:21:14",
"upload_time_iso_8601": "2025-10-09T01:21:14.024058Z",
"url": "https://files.pythonhosted.org/packages/03/16/3d9946e1e903c22ec57d1f93a9d8fdf1822de8bf88528c1e502fad3f5692/cudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8aff0c65219d428fefbdab787a691d94e27bd42bc7f444bfaff2043168b3e3f7",
"md5": "17fd5ac534da1355a00f60f9b7c22fd5",
"sha256": "030811e6b2c1bcb88a706439440319ee67c9816c3b6e30c4fd83b8d1a25f8430"
},
"downloads": -1,
"filename": "cudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "17fd5ac534da1355a00f60f9b7c22fd5",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.10",
"size": 2598605,
"upload_time": "2025-10-09T01:15:42",
"upload_time_iso_8601": "2025-10-09T01:15:42.144973Z",
"url": "https://files.pythonhosted.org/packages/8a/ff/0c65219d428fefbdab787a691d94e27bd42bc7f444bfaff2043168b3e3f7/cudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "87ec0a46f635b88fa88a13d366554c00aa9b2bc892a6c9e79088edbe3b5dea7a",
"md5": "6d0416dee2a4f5cd129f7ac8d022582c",
"sha256": "4e4726440f7dcde6874302fe559bd13909fc060c1a54265f77689d98ba00f599"
},
"downloads": -1,
"filename": "cudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "6d0416dee2a4f5cd129f7ac8d022582c",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.10",
"size": 2602566,
"upload_time": "2025-10-09T01:20:03",
"upload_time_iso_8601": "2025-10-09T01:20:03.470665Z",
"url": "https://files.pythonhosted.org/packages/87/ec/0a46f635b88fa88a13d366554c00aa9b2bc892a6c9e79088edbe3b5dea7a/cudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-09 01:13:55",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rapidsai",
"github_project": "cudf",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "cudf-cu12"
}