cudf-cu12


Namecudf-cu12 JSON
Version 25.10.0 PyPI version JSON
download
home_pageNone
SummarycuDF - GPU Dataframe
upload_time2025-10-09 01:13:55
maintainerNone
docs_urlNone
authorNVIDIA Corporation
requires_python>=3.10
licenseApache-2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # <div align="left"><img src="img/rapids_logo.png" width="90px"/>&nbsp;cuDF - GPU DataFrames</div>

## 📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!

cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library
for loading, joining, aggregating, filtering, and otherwise
manipulating data. cuDF leverages
[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a
blazing-fast C++/CUDA dataframe library and the [Apache
Arrow](https://arrow.apache.org/) columnar format to provide a
GPU-accelerated pandas API.

You can import `cudf` directly and use it like `pandas`:

```python
import cudf

tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100

# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```

Or, you can use cuDF as a no-code-change accelerator for pandas, using
[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).
`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for
supported operations and falling back to pandas when needed:

```python
%load_ext cudf.pandas  # pandas operations now use the GPU!

import pandas as pd

tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100

# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```

## Resources

- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!
- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.
- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)
- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)
- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.

See the [RAPIDS install page](https://docs.rapids.ai/install) for
the most up-to-date information and commands for installing cuDF
and other RAPIDS packages.

## Installation

### CUDA/GPU requirements

* CUDA 12.0+ with a compatible NVIDIA driver
* Volta architecture or better (Compute Capability >=7.0)

### Pip

cuDF can be installed via `pip` from the NVIDIA Python Package Index.
Be sure to select the appropriate cuDF package depending
on the major version of CUDA available in your environment:

```bash
# CUDA 13
pip install cudf-cu13

# CUDA 12
pip install cudf-cu12
```

### Conda

cuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:

```bash
# CUDA 13
conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=13.0

# CUDA 12
conda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=12.9
```

We also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD
of our latest development branch.

Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.

See the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.

## Build/Install from Source
See build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).

## Contributing

Please see our [guide for contributing to cuDF](CONTRIBUTING.md).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cudf-cu12",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "NVIDIA Corporation",
    "author_email": null,
    "download_url": null,
    "platform": null,
    "description": "# <div align=\"left\"><img src=\"img/rapids_logo.png\" width=\"90px\"/>&nbsp;cuDF - GPU DataFrames</div>\n\n## \ud83d\udce2 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!\n\ncuDF (pronounced \"KOO-dee-eff\") is a GPU DataFrame library\nfor loading, joining, aggregating, filtering, and otherwise\nmanipulating data. cuDF leverages\n[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a\nblazing-fast C++/CUDA dataframe library and the [Apache\nArrow](https://arrow.apache.org/) columnar format to provide a\nGPU-accelerated pandas API.\n\nYou can import `cudf` directly and use it like `pandas`:\n\n```python\nimport cudf\n\ntips_df = cudf.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\nOr, you can use cuDF as a no-code-change accelerator for pandas, using\n[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).\n`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for\nsupported operations and falling back to pandas when needed:\n\n```python\n%load_ext cudf.pandas  # pandas operations now use the GPU!\n\nimport pandas as pd\n\ntips_df = pd.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\n## Resources\n\n- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!\n- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.\n- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)\n- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)\n- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.\n\nSee the [RAPIDS install page](https://docs.rapids.ai/install) for\nthe most up-to-date information and commands for installing cuDF\nand other RAPIDS packages.\n\n## Installation\n\n### CUDA/GPU requirements\n\n* CUDA 12.0+ with a compatible NVIDIA driver\n* Volta architecture or better (Compute Capability >=7.0)\n\n### Pip\n\ncuDF can be installed via `pip` from the NVIDIA Python Package Index.\nBe sure to select the appropriate cuDF package depending\non the major version of CUDA available in your environment:\n\n```bash\n# CUDA 13\npip install cudf-cu13\n\n# CUDA 12\npip install cudf-cu12\n```\n\n### Conda\n\ncuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:\n\n```bash\n# CUDA 13\nconda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=13.0\n\n# CUDA 12\nconda install -c rapidsai -c conda-forge cudf=25.10 cuda-version=12.9\n```\n\nWe also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD\nof our latest development branch.\n\nNote: cuDF is supported only on Linux, and with Python versions 3.10 and later.\n\nSee the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.\n\n## Build/Install from Source\nSee build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).\n\n## Contributing\n\nPlease see our [guide for contributing to cuDF](CONTRIBUTING.md).\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "cuDF - GPU Dataframe",
    "version": "25.10.0",
    "project_urls": {
        "Documentation": "https://docs.rapids.ai/api/cudf/stable/",
        "Homepage": "https://github.com/rapidsai/cudf"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "476a1d9ce7ec08618e17845cc1416479893fe984a79e2ebdb04b2c790addef2b",
                "md5": "9638fd68e1db43f229170ab0ef2dff84",
                "sha256": "72cb209847adb4299a82b143bb2420ab2da90f5c9aca127ca3e01c78b0efe570"
            },
            "downloads": -1,
            "filename": "cudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "9638fd68e1db43f229170ab0ef2dff84",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.10",
            "size": 2601093,
            "upload_time": "2025-10-09T01:13:55",
            "upload_time_iso_8601": "2025-10-09T01:13:55.092594Z",
            "url": "https://files.pythonhosted.org/packages/47/6a/1d9ce7ec08618e17845cc1416479893fe984a79e2ebdb04b2c790addef2b/cudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4902c0d2ddd8d14cabb5b5404507632b1e6fc7cd6e856a7684917b4d86553fb9",
                "md5": "ba113058d6708e8e912ce9a79638ce20",
                "sha256": "130ef1f0d90cae33356454ae92a51540dcd7074779b5e1d95b1a2f979d14cdfa"
            },
            "downloads": -1,
            "filename": "cudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "ba113058d6708e8e912ce9a79638ce20",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.10",
            "size": 2603807,
            "upload_time": "2025-10-09T01:22:04",
            "upload_time_iso_8601": "2025-10-09T01:22:04.802535Z",
            "url": "https://files.pythonhosted.org/packages/49/02/c0d2ddd8d14cabb5b5404507632b1e6fc7cd6e856a7684917b4d86553fb9/cudf_cu12-25.10.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ff2bed770f0d4efa7a30553dd53feb683d8d38ad02f0bcce614d0ccc2f87419c",
                "md5": "ca8e70854911a5959781bedd8cb43b90",
                "sha256": "50d4ea5d09e7751a5676f517cf62eb8823adca7c51270de4cd82a7ab1a070d0c"
            },
            "downloads": -1,
            "filename": "cudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "ca8e70854911a5959781bedd8cb43b90",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.10",
            "size": 2601458,
            "upload_time": "2025-10-09T01:10:24",
            "upload_time_iso_8601": "2025-10-09T01:10:24.421828Z",
            "url": "https://files.pythonhosted.org/packages/ff/2b/ed770f0d4efa7a30553dd53feb683d8d38ad02f0bcce614d0ccc2f87419c/cudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "05eb6e32b65b608cf8d12577dd9373f73d61d283c269f78bed8e9352fdb89a28",
                "md5": "0193544a81ae8967afa1c442ff0f5179",
                "sha256": "20e4fed7db9ea6387e066d87073eff8da71e3fd45db8c98acbced88e87fe2c65"
            },
            "downloads": -1,
            "filename": "cudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "0193544a81ae8967afa1c442ff0f5179",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.10",
            "size": 2603948,
            "upload_time": "2025-10-09T01:21:41",
            "upload_time_iso_8601": "2025-10-09T01:21:41.335014Z",
            "url": "https://files.pythonhosted.org/packages/05/eb/6e32b65b608cf8d12577dd9373f73d61d283c269f78bed8e9352fdb89a28/cudf_cu12-25.10.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "38c0d6db2a7ecafdf2ba321aa0f5a74f72c40788c9d008c1e1ea91239317f7be",
                "md5": "5ecb14c6569a5fa95e1c3541fa849216",
                "sha256": "edd34017b6f82cc971bd0f0a7647df6752204a9c461ff03ee6284d8b218851be"
            },
            "downloads": -1,
            "filename": "cudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "5ecb14c6569a5fa95e1c3541fa849216",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.10",
            "size": 2597863,
            "upload_time": "2025-10-09T01:11:19",
            "upload_time_iso_8601": "2025-10-09T01:11:19.397549Z",
            "url": "https://files.pythonhosted.org/packages/38/c0/d6db2a7ecafdf2ba321aa0f5a74f72c40788c9d008c1e1ea91239317f7be/cudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "03163d9946e1e903c22ec57d1f93a9d8fdf1822de8bf88528c1e502fad3f5692",
                "md5": "60cec02308b34d315a3bac146851688b",
                "sha256": "33fb682431b9cd812c980bad8d6e6abc07182e8ed8c665a6faad92ba9ad9f3dc"
            },
            "downloads": -1,
            "filename": "cudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "60cec02308b34d315a3bac146851688b",
            "packagetype": "bdist_wheel",
            "python_version": "cp312",
            "requires_python": ">=3.10",
            "size": 2601545,
            "upload_time": "2025-10-09T01:21:14",
            "upload_time_iso_8601": "2025-10-09T01:21:14.024058Z",
            "url": "https://files.pythonhosted.org/packages/03/16/3d9946e1e903c22ec57d1f93a9d8fdf1822de8bf88528c1e502fad3f5692/cudf_cu12-25.10.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8aff0c65219d428fefbdab787a691d94e27bd42bc7f444bfaff2043168b3e3f7",
                "md5": "17fd5ac534da1355a00f60f9b7c22fd5",
                "sha256": "030811e6b2c1bcb88a706439440319ee67c9816c3b6e30c4fd83b8d1a25f8430"
            },
            "downloads": -1,
            "filename": "cudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
            "has_sig": false,
            "md5_digest": "17fd5ac534da1355a00f60f9b7c22fd5",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.10",
            "size": 2598605,
            "upload_time": "2025-10-09T01:15:42",
            "upload_time_iso_8601": "2025-10-09T01:15:42.144973Z",
            "url": "https://files.pythonhosted.org/packages/8a/ff/0c65219d428fefbdab787a691d94e27bd42bc7f444bfaff2043168b3e3f7/cudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "87ec0a46f635b88fa88a13d366554c00aa9b2bc892a6c9e79088edbe3b5dea7a",
                "md5": "6d0416dee2a4f5cd129f7ac8d022582c",
                "sha256": "4e4726440f7dcde6874302fe559bd13909fc060c1a54265f77689d98ba00f599"
            },
            "downloads": -1,
            "filename": "cudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
            "has_sig": false,
            "md5_digest": "6d0416dee2a4f5cd129f7ac8d022582c",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.10",
            "size": 2602566,
            "upload_time": "2025-10-09T01:20:03",
            "upload_time_iso_8601": "2025-10-09T01:20:03.470665Z",
            "url": "https://files.pythonhosted.org/packages/87/ec/0a46f635b88fa88a13d366554c00aa9b2bc892a6c9e79088edbe3b5dea7a/cudf_cu12-25.10.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-09 01:13:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rapidsai",
    "github_project": "cudf",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "cudf-cu12"
}
        
Elapsed time: 3.75988s