Name | cudf-cu12 JSON |
Version |
25.8.0
JSON |
| download |
home_page | None |
Summary | cuDF - GPU Dataframe |
upload_time | 2025-08-07 12:24:23 |
maintainer | None |
docs_url | None |
author | NVIDIA Corporation |
requires_python | >=3.10 |
license | Apache-2.0 |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# <div align="left"><img src="img/rapids_logo.png" width="90px"/> cuDF - GPU DataFrames</div>
## 📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!
cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library
for loading, joining, aggregating, filtering, and otherwise
manipulating data. cuDF leverages
[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a
blazing-fast C++/CUDA dataframe library and the [Apache
Arrow](https://arrow.apache.org/) columnar format to provide a
GPU-accelerated pandas API.
You can import `cudf` directly and use it like `pandas`:
```python
import cudf
tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```
Or, you can use cuDF as a no-code-change accelerator for pandas, using
[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).
`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for
supported operations and falling back to pandas when needed:
```python
%load_ext cudf.pandas # pandas operations now use the GPU!
import pandas as pd
tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100
# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```
## Resources
- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!
- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.
- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)
- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)
- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.
See the [RAPIDS install page](https://docs.rapids.ai/install) for
the most up-to-date information and commands for installing cuDF
and other RAPIDS packages.
## Installation
### CUDA/GPU requirements
* CUDA 12.0+ with a compatible NVIDIA driver
* Volta architecture or better (Compute Capability >=7.0)
### Pip
cuDF can be installed via `pip` from the NVIDIA Python Package Index.
Be sure to select the appropriate cuDF package depending
on the major version of CUDA available in your environment:
```bash
pip install cudf-cu12
```
### Conda
cuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:
```bash
conda install -c rapidsai -c conda-forge cudf=25.08
```
We also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD
of our latest development branch.
Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.
See the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.
## Build/Install from Source
See build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).
## Contributing
Please see our [guide for contributing to cuDF](CONTRIBUTING.md).
Raw data
{
"_id": null,
"home_page": null,
"name": "cudf-cu12",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "NVIDIA Corporation",
"author_email": null,
"download_url": null,
"platform": null,
"description": "# <div align=\"left\"><img src=\"img/rapids_logo.png\" width=\"90px\"/> cuDF - GPU DataFrames</div>\n\n## \ud83d\udce2 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!\n\ncuDF (pronounced \"KOO-dee-eff\") is a GPU DataFrame library\nfor loading, joining, aggregating, filtering, and otherwise\nmanipulating data. cuDF leverages\n[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a\nblazing-fast C++/CUDA dataframe library and the [Apache\nArrow](https://arrow.apache.org/) columnar format to provide a\nGPU-accelerated pandas API.\n\nYou can import `cudf` directly and use it like `pandas`:\n\n```python\nimport cudf\n\ntips_df = cudf.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\nOr, you can use cuDF as a no-code-change accelerator for pandas, using\n[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).\n`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for\nsupported operations and falling back to pandas when needed:\n\n```python\n%load_ext cudf.pandas # pandas operations now use the GPU!\n\nimport pandas as pd\n\ntips_df = pd.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\n## Resources\n\n- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!\n- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.\n- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)\n- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)\n- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.\n\nSee the [RAPIDS install page](https://docs.rapids.ai/install) for\nthe most up-to-date information and commands for installing cuDF\nand other RAPIDS packages.\n\n## Installation\n\n### CUDA/GPU requirements\n\n* CUDA 12.0+ with a compatible NVIDIA driver\n* Volta architecture or better (Compute Capability >=7.0)\n\n### Pip\n\ncuDF can be installed via `pip` from the NVIDIA Python Package Index.\nBe sure to select the appropriate cuDF package depending\non the major version of CUDA available in your environment:\n\n```bash\npip install cudf-cu12\n```\n\n### Conda\n\ncuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:\n\n```bash\nconda install -c rapidsai -c conda-forge cudf=25.08\n```\n\nWe also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD\nof our latest development branch.\n\nNote: cuDF is supported only on Linux, and with Python versions 3.10 and later.\n\nSee the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.\n\n## Build/Install from Source\nSee build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).\n\n## Contributing\n\nPlease see our [guide for contributing to cuDF](CONTRIBUTING.md).\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "cuDF - GPU Dataframe",
"version": "25.8.0",
"project_urls": {
"Documentation": "https://docs.rapids.ai/api/cudf/stable/",
"Homepage": "https://github.com/rapidsai/cudf"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0891ce26d21dfa1630295da9113cf3ffe989926117b8bd9b5e01b3b069fc66d4",
"md5": "7ca93571006ed28ec586490a039551d6",
"sha256": "1ab51a980126607e0eb25672c8bf1951d0ae9ee8b4ff342ab6509191b602db04"
},
"downloads": -1,
"filename": "cudf_cu12-25.8.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "7ca93571006ed28ec586490a039551d6",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 2630059,
"upload_time": "2025-08-07T12:24:23",
"upload_time_iso_8601": "2025-08-07T12:24:23.053947Z",
"url": "https://files.pythonhosted.org/packages/08/91/ce26d21dfa1630295da9113cf3ffe989926117b8bd9b5e01b3b069fc66d4/cudf_cu12-25.8.0-cp310-cp310-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fe68c25f914e0fac61bca70b392617d02e4202eea99ad4ff0d624878823212a9",
"md5": "a51be4620e7b5511d2cd3a20d29a58fe",
"sha256": "7f7e8a7c10df4be4ee3c19116f489da4dfd0f8674fe23019bd1f453b5810479d"
},
"downloads": -1,
"filename": "cudf_cu12-25.8.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "a51be4620e7b5511d2cd3a20d29a58fe",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.10",
"size": 2628152,
"upload_time": "2025-08-07T12:27:30",
"upload_time_iso_8601": "2025-08-07T12:27:30.200020Z",
"url": "https://files.pythonhosted.org/packages/fe/68/c25f914e0fac61bca70b392617d02e4202eea99ad4ff0d624878823212a9/cudf_cu12-25.8.0-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d9d31686e1a2d6187bf8cc248b7d0a8efbea6eb20784a707176dfdd881529149",
"md5": "3531f1d25d39863fc3f9e20515e25892",
"sha256": "888641383ee908b820a7acafec028e8bd9851b8884009c61281d19b312c15ca9"
},
"downloads": -1,
"filename": "cudf_cu12-25.8.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "3531f1d25d39863fc3f9e20515e25892",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 2630152,
"upload_time": "2025-08-07T12:23:36",
"upload_time_iso_8601": "2025-08-07T12:23:36.002559Z",
"url": "https://files.pythonhosted.org/packages/d9/d3/1686e1a2d6187bf8cc248b7d0a8efbea6eb20784a707176dfdd881529149/cudf_cu12-25.8.0-cp311-cp311-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "06d0d2f5fa56bd19fac6dfcb22614d11c188955b0569309e571812e3e2814d5f",
"md5": "bed6f6085b3e5d5221fb15ae2fb36837",
"sha256": "71b8ba1d76e634e45f4d69d5de1581e2f5d3ec0ddce5477d73190e4af208a734"
},
"downloads": -1,
"filename": "cudf_cu12-25.8.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "bed6f6085b3e5d5221fb15ae2fb36837",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.10",
"size": 2628363,
"upload_time": "2025-08-07T12:27:06",
"upload_time_iso_8601": "2025-08-07T12:27:06.304061Z",
"url": "https://files.pythonhosted.org/packages/06/d0/d2f5fa56bd19fac6dfcb22614d11c188955b0569309e571812e3e2814d5f/cudf_cu12-25.8.0-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ac5b05f758e47beb99716f49ccbbc17cca1d84863de32c4f0d91ec6ae4e1156f",
"md5": "f2ee4ee82338ca2ad312bbb845753b04",
"sha256": "6f717064652794458b806ce175acd1591a08581d6b781e89c3e08757f8b471d8"
},
"downloads": -1,
"filename": "cudf_cu12-25.8.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "f2ee4ee82338ca2ad312bbb845753b04",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 2626419,
"upload_time": "2025-08-07T12:22:47",
"upload_time_iso_8601": "2025-08-07T12:22:47.276984Z",
"url": "https://files.pythonhosted.org/packages/ac/5b/05f758e47beb99716f49ccbbc17cca1d84863de32c4f0d91ec6ae4e1156f/cudf_cu12-25.8.0-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4055dc077f68d59de7cd37660d2d4a46eb656f658a463d0b782f00d66b382f46",
"md5": "dfa2cf9a73d5eeb3993e6fc3ed84a2dd",
"sha256": "adcfd814941a921c29d56a53ae87bf6d97834ac63ea01547f9d9ba7d5e6841bc"
},
"downloads": -1,
"filename": "cudf_cu12-25.8.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "dfa2cf9a73d5eeb3993e6fc3ed84a2dd",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.10",
"size": 2625707,
"upload_time": "2025-08-07T12:26:43",
"upload_time_iso_8601": "2025-08-07T12:26:43.193154Z",
"url": "https://files.pythonhosted.org/packages/40/55/dc077f68d59de7cd37660d2d4a46eb656f658a463d0b782f00d66b382f46/cudf_cu12-25.8.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "30af29424079752c6c60f031d42b0713058402f1979524495b8c1b054d71580d",
"md5": "db3fd1588335d07bc5c64e191e3bfeee",
"sha256": "44bb968928e92a24257ee727b14ab57d5c7c9a12d782ac9256338043b968514e"
},
"downloads": -1,
"filename": "cudf_cu12-25.8.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"has_sig": false,
"md5_digest": "db3fd1588335d07bc5c64e191e3bfeee",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.10",
"size": 2625369,
"upload_time": "2025-08-07T12:21:59",
"upload_time_iso_8601": "2025-08-07T12:21:59.728588Z",
"url": "https://files.pythonhosted.org/packages/30/af/29424079752c6c60f031d42b0713058402f1979524495b8c1b054d71580d/cudf_cu12-25.8.0-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "318742359b70bcf4b7d202e3d6faf335ac7bbeb79e1435245f989c76684903e5",
"md5": "01cd16f1866b0cf5313f4559e0bb5948",
"sha256": "b977c86b1afa02cd9f4286e0c9cb40fafd3c318aed9454997e578928989581fc"
},
"downloads": -1,
"filename": "cudf_cu12-25.8.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "01cd16f1866b0cf5313f4559e0bb5948",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.10",
"size": 2625293,
"upload_time": "2025-08-07T12:26:20",
"upload_time_iso_8601": "2025-08-07T12:26:20.246560Z",
"url": "https://files.pythonhosted.org/packages/31/87/42359b70bcf4b7d202e3d6faf335ac7bbeb79e1435245f989c76684903e5/cudf_cu12-25.8.0-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-07 12:24:23",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rapidsai",
"github_project": "cudf",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "cudf-cu12"
}