cudf-polars-cu11


Namecudf-polars-cu11 JSON
Version 24.12.0 PyPI version JSON
download
home_pageNone
SummaryExecutor for polars using cudf
upload_time2024-12-12 19:15:12
maintainerNone
docs_urlNone
authorNVIDIA Corporation
requires_python>=3.10
licenseApache 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # <div align="left"><img src="img/rapids_logo.png" width="90px"/>&nbsp;cuDF - GPU DataFrames</div>

## 📢 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!

cuDF (pronounced "KOO-dee-eff") is a GPU DataFrame library
for loading, joining, aggregating, filtering, and otherwise
manipulating data. cuDF leverages
[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a
blazing-fast C++/CUDA dataframe library and the [Apache
Arrow](https://arrow.apache.org/) columnar format to provide a
GPU-accelerated pandas API.

You can import `cudf` directly and use it like `pandas`:

```python
import cudf

tips_df = cudf.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100

# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```

Or, you can use cuDF as a no-code-change accelerator for pandas, using
[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).
`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for
supported operations and falling back to pandas when needed:

```python
%load_ext cudf.pandas  # pandas operations now use the GPU!

import pandas as pd

tips_df = pd.read_csv("https://github.com/plotly/datasets/raw/master/tips.csv")
tips_df["tip_percentage"] = tips_df["tip"] / tips_df["total_bill"] * 100

# display average tip by dining party size
print(tips_df.groupby("size").tip_percentage.mean())
```

## Resources

- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!
- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.
- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)
- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)
- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.

See the [RAPIDS install page](https://docs.rapids.ai/install) for
the most up-to-date information and commands for installing cuDF
and other RAPIDS packages.

## Installation

### CUDA/GPU requirements

* CUDA 11.2+
* NVIDIA driver 450.80.02+
* Volta architecture or better (Compute Capability >=7.0)

### Pip

cuDF can be installed via `pip` from the NVIDIA Python Package Index.
Be sure to select the appropriate cuDF package depending
on the major version of CUDA available in your environment:

For CUDA 11.x:

```bash
pip install --extra-index-url=https://pypi.nvidia.com cudf-cu11
```

For CUDA 12.x:

```bash
pip install --extra-index-url=https://pypi.nvidia.com cudf-cu12
```

### Conda

cuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:

```bash
conda install -c rapidsai -c conda-forge -c nvidia \
    cudf=24.12 python=3.12 cuda-version=12.5
```

We also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD
of our latest development branch.

Note: cuDF is supported only on Linux, and with Python versions 3.10 and later.

See the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.

## Build/Install from Source
See build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).

## Contributing

Please see our [guide for contributing to cuDF](CONTRIBUTING.md).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cudf-polars-cu11",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "NVIDIA Corporation",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/45/6c/73010cb6d7a0c396a3ad1a3ff1e295eca7b7846c706cb1dec78992d10032/cudf_polars_cu11-24.12.0.tar.gz",
    "platform": null,
    "description": "# <div align=\"left\"><img src=\"img/rapids_logo.png\" width=\"90px\"/>&nbsp;cuDF - GPU DataFrames</div>\n\n## \ud83d\udce2 cuDF can now be used as a no-code-change accelerator for pandas! To learn more, see [here](https://rapids.ai/cudf-pandas/)!\n\ncuDF (pronounced \"KOO-dee-eff\") is a GPU DataFrame library\nfor loading, joining, aggregating, filtering, and otherwise\nmanipulating data. cuDF leverages\n[libcudf](https://docs.rapids.ai/api/libcudf/stable/), a\nblazing-fast C++/CUDA dataframe library and the [Apache\nArrow](https://arrow.apache.org/) columnar format to provide a\nGPU-accelerated pandas API.\n\nYou can import `cudf` directly and use it like `pandas`:\n\n```python\nimport cudf\n\ntips_df = cudf.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\nOr, you can use cuDF as a no-code-change accelerator for pandas, using\n[`cudf.pandas`](https://docs.rapids.ai/api/cudf/stable/cudf_pandas).\n`cudf.pandas` supports 100% of the pandas API, utilizing cuDF for\nsupported operations and falling back to pandas when needed:\n\n```python\n%load_ext cudf.pandas  # pandas operations now use the GPU!\n\nimport pandas as pd\n\ntips_df = pd.read_csv(\"https://github.com/plotly/datasets/raw/master/tips.csv\")\ntips_df[\"tip_percentage\"] = tips_df[\"tip\"] / tips_df[\"total_bill\"] * 100\n\n# display average tip by dining party size\nprint(tips_df.groupby(\"size\").tip_percentage.mean())\n```\n\n## Resources\n\n- [Try cudf.pandas now](https://nvda.ws/rapids-cudf): Explore `cudf.pandas` on a free GPU enabled instance on Google Colab!\n- [Install](https://docs.rapids.ai/install): Instructions for installing cuDF and other [RAPIDS](https://rapids.ai) libraries.\n- [cudf (Python) documentation](https://docs.rapids.ai/api/cudf/stable/)\n- [libcudf (C++/CUDA) documentation](https://docs.rapids.ai/api/libcudf/stable/)\n- [RAPIDS Community](https://rapids.ai/learn-more/#get-involved): Get help, contribute, and collaborate.\n\nSee the [RAPIDS install page](https://docs.rapids.ai/install) for\nthe most up-to-date information and commands for installing cuDF\nand other RAPIDS packages.\n\n## Installation\n\n### CUDA/GPU requirements\n\n* CUDA 11.2+\n* NVIDIA driver 450.80.02+\n* Volta architecture or better (Compute Capability >=7.0)\n\n### Pip\n\ncuDF can be installed via `pip` from the NVIDIA Python Package Index.\nBe sure to select the appropriate cuDF package depending\non the major version of CUDA available in your environment:\n\nFor CUDA 11.x:\n\n```bash\npip install --extra-index-url=https://pypi.nvidia.com cudf-cu11\n```\n\nFor CUDA 12.x:\n\n```bash\npip install --extra-index-url=https://pypi.nvidia.com cudf-cu12\n```\n\n### Conda\n\ncuDF can be installed with conda (via [miniforge](https://github.com/conda-forge/miniforge)) from the `rapidsai` channel:\n\n```bash\nconda install -c rapidsai -c conda-forge -c nvidia \\\n    cudf=24.12 python=3.12 cuda-version=12.5\n```\n\nWe also provide [nightly Conda packages](https://anaconda.org/rapidsai-nightly) built from the HEAD\nof our latest development branch.\n\nNote: cuDF is supported only on Linux, and with Python versions 3.10 and later.\n\nSee the [RAPIDS installation guide](https://docs.rapids.ai/install) for more OS and version info.\n\n## Build/Install from Source\nSee build [instructions](CONTRIBUTING.md#setting-up-your-build-environment).\n\n## Contributing\n\nPlease see our [guide for contributing to cuDF](CONTRIBUTING.md).\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Executor for polars using cudf",
    "version": "24.12.0",
    "project_urls": {
        "Homepage": "https://github.com/rapidsai/cudf"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "456c73010cb6d7a0c396a3ad1a3ff1e295eca7b7846c706cb1dec78992d10032",
                "md5": "968babff7b671c772b475f15f6af3e3f",
                "sha256": "f54c2f687168e2c13f7fbcedf7955419914587ce08d581ec9f60807b04af2337"
            },
            "downloads": -1,
            "filename": "cudf_polars_cu11-24.12.0.tar.gz",
            "has_sig": false,
            "md5_digest": "968babff7b671c772b475f15f6af3e3f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 2323,
            "upload_time": "2024-12-12T19:15:12",
            "upload_time_iso_8601": "2024-12-12T19:15:12.049639Z",
            "url": "https://files.pythonhosted.org/packages/45/6c/73010cb6d7a0c396a3ad1a3ff1e295eca7b7846c706cb1dec78992d10032/cudf_polars_cu11-24.12.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-12 19:15:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rapidsai",
    "github_project": "cudf",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "cudf-polars-cu11"
}
        
Elapsed time: 0.44305s