cufinufft


Namecufinufft JSON
Version 2.3.1 PyPI version JSON
download
home_pageNone
SummaryNon-uniform fast Fourier transforms on the GPU
upload_time2024-12-10 14:58:10
maintainerNone
docs_urlNone
authorYu-shuan Melody Shih, Garrett Wright, Joakim Anden, Marco Barbone, Robert Blackwell, Johannes Blascke, Alex Barnett
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FINUFFT GPU library Python wrappers

This is a Python interface to the efficient GPU CUDA implementation of the 1-, 2- and
3-dimensional nonuniform fast Fourier transform (NUFFT), provided
in the FINUFFT library. It performs type
1 (nonuniform to uniform) or type 2 (uniform to nonuniform) transforms.
For a mathematical description of the NUFFT and applications to signal
processing, imaging, and scientific computing, see [the FINUFFT
documentation](https://finufft.readthedocs.io).
The Python GPU interface is [here](https://finufft.readthedocs.io/en/latest/python_gpu.html).
Usage examples can be found in the examples folder in the same directory as
the file you are reading.

If you use this GPU feature of our package, please cite our GPU paper:

Y. Shih, G. Wright, J. Andén, J. Blaschke, A. H. Barnett (2021).
cuFINUFFT: a load-balanced GPU library for general-purpose nonuniform FFTs.
arXiv preprint arXiv:2102.08463.
[(paper)](https://arxiv.org/abs/2102.08463)
[(bibtex)](https://arxiv.org/bibtex/2102.08463)

**Note**: With version 2.2 we have changed the GPU interfaces slightly to better align with FINUFFT. For an outline of the changes, please see [the migration guide](https://finufft.readthedocs.io/en/latest/cufinufft_migration.html).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cufinufft",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Joakim Anden <janden-vscholar@flatironinstitute.org>",
    "keywords": null,
    "author": "Yu-shuan Melody Shih, Garrett Wright, Joakim Anden, Marco Barbone, Robert Blackwell, Johannes Blascke, Alex Barnett",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/61/27/f633fd40292047f229bff84615c46b1c8370de73c2491a3e10e87e958255/cufinufft-2.3.1.tar.gz",
    "platform": null,
    "description": "# FINUFFT GPU library Python wrappers\n\nThis is a Python interface to the efficient GPU CUDA implementation of the 1-, 2- and\n3-dimensional nonuniform fast Fourier transform (NUFFT), provided\nin the FINUFFT library. It performs type\n1 (nonuniform to uniform) or type 2 (uniform to nonuniform) transforms.\nFor a mathematical description of the NUFFT and applications to signal\nprocessing, imaging, and scientific computing, see [the FINUFFT\ndocumentation](https://finufft.readthedocs.io).\nThe Python GPU interface is [here](https://finufft.readthedocs.io/en/latest/python_gpu.html).\nUsage examples can be found in the examples folder in the same directory as\nthe file you are reading.\n\nIf you use this GPU feature of our package, please cite our GPU paper:\n\nY. Shih, G. Wright, J. And\u00e9n, J. Blaschke, A. H. Barnett (2021).\ncuFINUFFT: a load-balanced GPU library for general-purpose nonuniform FFTs.\narXiv preprint arXiv:2102.08463.\n[(paper)](https://arxiv.org/abs/2102.08463)\n[(bibtex)](https://arxiv.org/bibtex/2102.08463)\n\n**Note**: With version 2.2 we have changed the GPU interfaces slightly to better align with FINUFFT. For an outline of the changes, please see [the migration guide](https://finufft.readthedocs.io/en/latest/cufinufft_migration.html).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Non-uniform fast Fourier transforms on the GPU",
    "version": "2.3.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "49503c0eceabce890ac61d2ba38062baa4f15f4000ffaa901cac5b236de1203f",
                "md5": "a71b1ffd4a18aa2404ed291584f86b1e",
                "sha256": "3617e8b5200be38db5e20fa63268110c3e8ad773299db53a28ab3174924de154"
            },
            "downloads": -1,
            "filename": "cufinufft-2.3.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "a71b1ffd4a18aa2404ed291584f86b1e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 166807117,
            "upload_time": "2024-12-10T14:57:49",
            "upload_time_iso_8601": "2024-12-10T14:57:49.156191Z",
            "url": "https://files.pythonhosted.org/packages/49/50/3c0eceabce890ac61d2ba38062baa4f15f4000ffaa901cac5b236de1203f/cufinufft-2.3.1-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6127f633fd40292047f229bff84615c46b1c8370de73c2491a3e10e87e958255",
                "md5": "60bd1967a1ac74315017f4f02024878e",
                "sha256": "de9d8a72cbe0d8d8358d97c8ca5467cae013c99d03b5e944183760d8e40da0eb"
            },
            "downloads": -1,
            "filename": "cufinufft-2.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "60bd1967a1ac74315017f4f02024878e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 3930916,
            "upload_time": "2024-12-10T14:58:10",
            "upload_time_iso_8601": "2024-12-10T14:58:10.558797Z",
            "url": "https://files.pythonhosted.org/packages/61/27/f633fd40292047f229bff84615c46b1c8370de73c2491a3e10e87e958255/cufinufft-2.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-10 14:58:10",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "cufinufft"
}
        
Elapsed time: 0.39666s