cugraph-cu12


Namecugraph-cu12 JSON
Version 24.12.0 PyPI version JSON
download
home_pageNone
SummarycuGraph - RAPIDS GPU Graph Analytics
upload_time2024-12-12 19:26:55
maintainerNone
docs_urlNone
authorNVIDIA Corporation
requires_python>=3.10
licenseApache 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center"; style="font-style: italic";>
  <br>
  <img src="img/cugraph_logo_2.png" alt="cuGraph" width="500">
</h1>

<div align="center">

<a href="https://github.com/rapidsai/cugraph/blob/main/LICENSE">
    <img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg" alt="License"></a>
<img alt="GitHub tag (latest by date)" src="https://img.shields.io/github/v/tag/rapidsai/cugraph">

<a href="https://github.com/rapidsai/cugraph/stargazers">
    <img src="https://img.shields.io/github/stars/rapidsai/cugraph"></a>
<img alt="Conda" src="https://img.shields.io/conda/dn/rapidsai/cugraph">
<img alt="GitHub last commit" src="https://img.shields.io/github/last-commit/rapidsai/cugraph">

<img alt="Conda" src="https://img.shields.io/conda/pn/rapidsai/cugraph" />

<a href="https://rapids.ai/"><img src="img/rapids_logo.png" alt="RAPIDS" width="125"></a>

</div>

<br>

[RAPIDS](https://rapids.ai) cuGraph is a monorepo that represents a collection of packages focused on GPU-accelerated graph analytics, including support for property graphs, remote (graph as a service) operations, and graph neural networks (GNNs).  cuGraph supports the creation and manipulation of graphs followed by the execution of scalable fast graph algorithms.

<div align="center">

[Getting cuGraph](./docs/cugraph/source/installation/getting_cugraph.md) *
[Graph Algorithms](./docs/cugraph/source/graph_support/algorithms.md) *
[Graph Service](./readme_pages/cugraph_service.md) *
[Property Graph](./readme_pages/property_graph.md) *
[GNN Support](./readme_pages/gnn_support.md)

</div>

-----

## Table of contents
- Installation
  - [Getting cuGraph Packages](./docs/cugraph/source/installation/getting_cugraph.md)
  - [Building from Source](./docs/cugraph/source/installation/source_build.md)
  - [Contributing to cuGraph](./readme_pages/CONTRIBUTING.md)
- General
  - [Latest News](./readme_pages/news.md)
  - [Current list of algorithms](./docs/cugraph/source/graph_support/algorithms.md)
  - [Blogs and Presentation](./docs/cugraph/source/tutorials/cugraph_blogs.rst)
  - [Performance](./readme_pages/performance/performance.md)
- Packages
  - [cuGraph Python](./readme_pages/cugraph_python.md)
    - [Property Graph](./readme_pages/property_graph.md)
    - [External Data Types](./readme_pages/data_types.md)
  - [pylibcugraph](./readme_pages/pylibcugraph.md)
  - [libcugraph (C/C++/CUDA)](./readme_pages/libcugraph.md)
  - [nx-cugraph](https://rapids.ai/nx-cugraph/)
  - [cugraph-service](./readme_pages/cugraph_service.md)
  - [cugraph-ops](./readme_pages/cugraph_ops.md)
- API Docs
  - Python
    - [Python Nightly](https://docs.rapids.ai/api/cugraph/nightly/)
    - [Python Stable](https://docs.rapids.ai/api/cugraph/stable/)
  - C++
    - [C++ Nightly](https://docs.rapids.ai/api/libcugraph/nightly/)
    - [C++ Stable](https://docs.rapids.ai/api/libcugraph/stable/)
- References
  - [RAPIDS](https://rapids.ai/)
  - [ARROW](https://arrow.apache.org/)
  - [DASK](https://www.dask.org/)

<br><br>

-----

<img src="img/Stack2.png" alt="Stack" width="800">

[RAPIDS](https://rapids.ai) cuGraph is a collection of GPU-accelerated graph algorithms and services. At the Python layer, cuGraph operates on [GPU DataFrames](https://github.com/rapidsai/cudf), thereby allowing for seamless passing of data between ETL tasks in [cuDF](https://github.com/rapidsai/cudf) and machine learning tasks in [cuML](https://github.com/rapidsai/cuml). Data scientists familiar with Python will quickly pick up how cuGraph integrates with the Pandas-like API of cuDF.  Likewise, users familiar with NetworkX will quickly recognize the NetworkX-like API provided in cuGraph, with the goal to allow existing code to be ported with minimal effort into RAPIDS. To simplify integration, cuGraph also supports data found in [Pandas DataFrame](https://pandas.pydata.org/), [NetworkX Graph Objects](https://networkx.org/) and several other formats.

While the high-level cugraph python API provides an easy-to-use and familiar interface for data scientists that's consistent with other RAPIDS libraries in their workflow, some use cases require access to lower-level graph theory concepts.  For these users, we provide an additional Python API called pylibcugraph, intended for applications that require a tighter integration with cuGraph at the Python layer with fewer dependencies.  Users familiar with C/C++/CUDA and graph structures can access libcugraph and libcugraph_c for low level integration outside of python.

**NOTE:** For the latest stable [README.md](https://github.com/rapidsai/cugraph/blob/main/README.md) ensure you are on the latest branch.



As an example, the following Python snippet loads graph data and computes PageRank:

```python
import cudf
import cugraph

# read data into a cuDF DataFrame using read_csv
gdf = cudf.read_csv("graph_data.csv", names=["src", "dst"], dtype=["int32", "int32"])

# We now have data as edge pairs
# create a Graph using the source (src) and destination (dst) vertex pairs
G = cugraph.Graph()
G.from_cudf_edgelist(gdf, source='src', destination='dst')

# Let's now get the PageRank score of each vertex by calling cugraph.pagerank
df_page = cugraph.pagerank(G)

# Let's look at the top 10 PageRank Score
df_page.sort_values('pagerank', ascending=False).head(10)

```

</br>

[Why cuGraph does not support Method Cascading](https://docs.rapids.ai/api/cugraph/nightly/basics/cugraph_cascading.html)



------
# Projects that use cuGraph

(alphabetical order)
* ArangoDB - a free and open-source native multi-model database system  - https://www.arangodb.com/
* CuPy - "NumPy/SciPy-compatible Array Library for GPU-accelerated Computing with Python" -  https://cupy.dev/
* Memgraph - In-memory Graph database - https://memgraph.com/
* NetworkX (via [nx-cugraph](https://rapids.ai/nx-cugraph/) backend) - an extremely popular, free and open-source package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks - https://networkx.org/
* PyGraphistry - free and open-source GPU graph ETL, AI, and visualization, including native RAPIDS & cuGraph support - http://github.com/graphistry/pygraphistry
* ScanPy - a scalable toolkit for analyzing single-cell gene expression data - https://scanpy.readthedocs.io/en/stable/

(please post an issue if you have a project to add to this list)



------
<br>

## <div align="center"><img src="img/rapids_logo.png" width="265px"/></div> Open GPU Data Science <a name="rapids"></a>


The RAPIDS suite of open source software libraries aims to enable execution of end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA® CUDA® primitives for low-level compute optimization but exposing that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces.

<p align="center"><img src="img/rapids_arrow.png" width="50%"/></p>

For more project details, see [rapids.ai](https://rapids.ai/).

<br><br>
### Apache Arrow on GPU  <a name="arrow"></a>

The GPU version of [Apache Arrow](https://arrow.apache.org/) is a common API that enables efficient interchange of tabular data between processes running on the GPU. End-to-end computation on the GPU avoids unnecessary copying and converting of data off the GPU, reducing compute time and cost for high-performance analytics common in artificial intelligence workloads. As the name implies, cuDF uses the Apache Arrow columnar data format on the GPU. Currently, a subset of the features in Apache Arrow are supported.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cugraph-cu12",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "NVIDIA Corporation",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/bf/3b/f7998a26e74d37ac49914f6863bbaf47849facaafc9bec32b6a4f5d3885a/cugraph_cu12-24.12.0.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\"; style=\"font-style: italic\";>\n  <br>\n  <img src=\"img/cugraph_logo_2.png\" alt=\"cuGraph\" width=\"500\">\n</h1>\n\n<div align=\"center\">\n\n<a href=\"https://github.com/rapidsai/cugraph/blob/main/LICENSE\">\n    <img src=\"https://img.shields.io/badge/License-Apache%202.0-blue.svg\" alt=\"License\"></a>\n<img alt=\"GitHub tag (latest by date)\" src=\"https://img.shields.io/github/v/tag/rapidsai/cugraph\">\n\n<a href=\"https://github.com/rapidsai/cugraph/stargazers\">\n    <img src=\"https://img.shields.io/github/stars/rapidsai/cugraph\"></a>\n<img alt=\"Conda\" src=\"https://img.shields.io/conda/dn/rapidsai/cugraph\">\n<img alt=\"GitHub last commit\" src=\"https://img.shields.io/github/last-commit/rapidsai/cugraph\">\n\n<img alt=\"Conda\" src=\"https://img.shields.io/conda/pn/rapidsai/cugraph\" />\n\n<a href=\"https://rapids.ai/\"><img src=\"img/rapids_logo.png\" alt=\"RAPIDS\" width=\"125\"></a>\n\n</div>\n\n<br>\n\n[RAPIDS](https://rapids.ai) cuGraph is a monorepo that represents a collection of packages focused on GPU-accelerated graph analytics, including support for property graphs, remote (graph as a service) operations, and graph neural networks (GNNs).  cuGraph supports the creation and manipulation of graphs followed by the execution of scalable fast graph algorithms.\n\n<div align=\"center\">\n\n[Getting cuGraph](./docs/cugraph/source/installation/getting_cugraph.md) *\n[Graph Algorithms](./docs/cugraph/source/graph_support/algorithms.md) *\n[Graph Service](./readme_pages/cugraph_service.md) *\n[Property Graph](./readme_pages/property_graph.md) *\n[GNN Support](./readme_pages/gnn_support.md)\n\n</div>\n\n-----\n\n## Table of contents\n- Installation\n  - [Getting cuGraph Packages](./docs/cugraph/source/installation/getting_cugraph.md)\n  - [Building from Source](./docs/cugraph/source/installation/source_build.md)\n  - [Contributing to cuGraph](./readme_pages/CONTRIBUTING.md)\n- General\n  - [Latest News](./readme_pages/news.md)\n  - [Current list of algorithms](./docs/cugraph/source/graph_support/algorithms.md)\n  - [Blogs and Presentation](./docs/cugraph/source/tutorials/cugraph_blogs.rst)\n  - [Performance](./readme_pages/performance/performance.md)\n- Packages\n  - [cuGraph Python](./readme_pages/cugraph_python.md)\n    - [Property Graph](./readme_pages/property_graph.md)\n    - [External Data Types](./readme_pages/data_types.md)\n  - [pylibcugraph](./readme_pages/pylibcugraph.md)\n  - [libcugraph (C/C++/CUDA)](./readme_pages/libcugraph.md)\n  - [nx-cugraph](https://rapids.ai/nx-cugraph/)\n  - [cugraph-service](./readme_pages/cugraph_service.md)\n  - [cugraph-ops](./readme_pages/cugraph_ops.md)\n- API Docs\n  - Python\n    - [Python Nightly](https://docs.rapids.ai/api/cugraph/nightly/)\n    - [Python Stable](https://docs.rapids.ai/api/cugraph/stable/)\n  - C++\n    - [C++ Nightly](https://docs.rapids.ai/api/libcugraph/nightly/)\n    - [C++ Stable](https://docs.rapids.ai/api/libcugraph/stable/)\n- References\n  - [RAPIDS](https://rapids.ai/)\n  - [ARROW](https://arrow.apache.org/)\n  - [DASK](https://www.dask.org/)\n\n<br><br>\n\n-----\n\n<img src=\"img/Stack2.png\" alt=\"Stack\" width=\"800\">\n\n[RAPIDS](https://rapids.ai) cuGraph is a collection of GPU-accelerated graph algorithms and services. At the Python layer, cuGraph operates on [GPU DataFrames](https://github.com/rapidsai/cudf), thereby allowing for seamless passing of data between ETL tasks in [cuDF](https://github.com/rapidsai/cudf) and machine learning tasks in [cuML](https://github.com/rapidsai/cuml). Data scientists familiar with Python will quickly pick up how cuGraph integrates with the Pandas-like API of cuDF.  Likewise, users familiar with NetworkX will quickly recognize the NetworkX-like API provided in cuGraph, with the goal to allow existing code to be ported with minimal effort into RAPIDS. To simplify integration, cuGraph also supports data found in [Pandas DataFrame](https://pandas.pydata.org/), [NetworkX Graph Objects](https://networkx.org/) and several other formats.\n\nWhile the high-level cugraph python API provides an easy-to-use and familiar interface for data scientists that's consistent with other RAPIDS libraries in their workflow, some use cases require access to lower-level graph theory concepts.  For these users, we provide an additional Python API called pylibcugraph, intended for applications that require a tighter integration with cuGraph at the Python layer with fewer dependencies.  Users familiar with C/C++/CUDA and graph structures can access libcugraph and libcugraph_c for low level integration outside of python.\n\n**NOTE:** For the latest stable [README.md](https://github.com/rapidsai/cugraph/blob/main/README.md) ensure you are on the latest branch.\n\n\n\nAs an example, the following Python snippet loads graph data and computes PageRank:\n\n```python\nimport cudf\nimport cugraph\n\n# read data into a cuDF DataFrame using read_csv\ngdf = cudf.read_csv(\"graph_data.csv\", names=[\"src\", \"dst\"], dtype=[\"int32\", \"int32\"])\n\n# We now have data as edge pairs\n# create a Graph using the source (src) and destination (dst) vertex pairs\nG = cugraph.Graph()\nG.from_cudf_edgelist(gdf, source='src', destination='dst')\n\n# Let's now get the PageRank score of each vertex by calling cugraph.pagerank\ndf_page = cugraph.pagerank(G)\n\n# Let's look at the top 10 PageRank Score\ndf_page.sort_values('pagerank', ascending=False).head(10)\n\n```\n\n</br>\n\n[Why cuGraph does not support Method Cascading](https://docs.rapids.ai/api/cugraph/nightly/basics/cugraph_cascading.html)\n\n\n\n------\n# Projects that use cuGraph\n\n(alphabetical order)\n* ArangoDB - a free and open-source native multi-model database system  - https://www.arangodb.com/\n* CuPy - \"NumPy/SciPy-compatible Array Library for GPU-accelerated Computing with Python\" -  https://cupy.dev/\n* Memgraph - In-memory Graph database - https://memgraph.com/\n* NetworkX (via [nx-cugraph](https://rapids.ai/nx-cugraph/) backend) - an extremely popular, free and open-source package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks - https://networkx.org/\n* PyGraphistry - free and open-source GPU graph ETL, AI, and visualization, including native RAPIDS & cuGraph support - http://github.com/graphistry/pygraphistry\n* ScanPy - a scalable toolkit for analyzing single-cell gene expression data - https://scanpy.readthedocs.io/en/stable/\n\n(please post an issue if you have a project to add to this list)\n\n\n\n------\n<br>\n\n## <div align=\"center\"><img src=\"img/rapids_logo.png\" width=\"265px\"/></div> Open GPU Data Science <a name=\"rapids\"></a>\n\n\nThe RAPIDS suite of open source software libraries aims to enable execution of end-to-end data science and analytics pipelines entirely on GPUs. It relies on NVIDIA\u00ae CUDA\u00ae primitives for low-level compute optimization but exposing that GPU parallelism and high-bandwidth memory speed through user-friendly Python interfaces.\n\n<p align=\"center\"><img src=\"img/rapids_arrow.png\" width=\"50%\"/></p>\n\nFor more project details, see [rapids.ai](https://rapids.ai/).\n\n<br><br>\n### Apache Arrow on GPU  <a name=\"arrow\"></a>\n\nThe GPU version of [Apache Arrow](https://arrow.apache.org/) is a common API that enables efficient interchange of tabular data between processes running on the GPU. End-to-end computation on the GPU avoids unnecessary copying and converting of data off the GPU, reducing compute time and cost for high-performance analytics common in artificial intelligence workloads. As the name implies, cuDF uses the Apache Arrow columnar data format on the GPU. Currently, a subset of the features in Apache Arrow are supported.\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "cuGraph - RAPIDS GPU Graph Analytics",
    "version": "24.12.0",
    "project_urls": {
        "Documentation": "https://docs.rapids.ai/api/cugraph/stable/",
        "Homepage": "https://github.com/rapidsai/cugraph"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bf3bf7998a26e74d37ac49914f6863bbaf47849facaafc9bec32b6a4f5d3885a",
                "md5": "706fcdd38ad276bb3248ab67e4e2049b",
                "sha256": "3a032f9fbb3923e7dca1df29320192417c396a4078aaa3420dba6ddef6a99132"
            },
            "downloads": -1,
            "filename": "cugraph_cu12-24.12.0.tar.gz",
            "has_sig": false,
            "md5_digest": "706fcdd38ad276bb3248ab67e4e2049b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 3859,
            "upload_time": "2024-12-12T19:26:55",
            "upload_time_iso_8601": "2024-12-12T19:26:55.724942Z",
            "url": "https://files.pythonhosted.org/packages/bf/3b/f7998a26e74d37ac49914f6863bbaf47849facaafc9bec32b6a4f5d3885a/cugraph_cu12-24.12.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-12 19:26:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rapidsai",
    "github_project": "cugraph",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "cugraph-cu12"
}
        
Elapsed time: 0.64304s