Name | cugraph-dgl-cu12 JSON |
Version |
24.12.0
JSON |
| download |
home_page | None |
Summary | cugraph extensions for DGL |
upload_time | 2024-12-12 22:26:10 |
maintainer | None |
docs_url | None |
author | NVIDIA Corporation |
requires_python | >=3.10 |
license | Apache 2.0 |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# cugraph_dgl
## Description
[RAPIDS](https://rapids.ai) cugraph_dgl provides a duck-typed version of the [DGLGraph](https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph) class, which uses cugraph for storing graph structure and node/edge feature data. Using cugraph as the backend allows DGL users to access a collection of GPU accelerated algorithms for graph analytics, such as centrality computation and community detection.
## Conda
Install and update cugraph-dgl and the required dependencies using the command:
```
# CUDA 11
conda install -c rapidsai -c pytorch -c conda-forge -c nvidia -c dglteam/label/th23_cu118 cugraph-dgl
# CUDA 12
conda install -c rapidsai -c pytorch -c conda-forge -c nvidia -c dglteam/label/th23_cu121 cugraph-dgl
```
## Build from Source
### Create the conda development environment
```
mamba env create -n cugraph_dgl_dev --file conda/cugraph_dgl_dev_11.6.yml
```
### Install in editable mode
```
pip install -e .
```
### Run tests
```
pytest tests/*
```
## Usage
```diff
+from cugraph_dgl.convert import cugraph_storage_from_heterograph
+cugraph_g = cugraph_storage_from_heterograph(dgl_g)
sampler = dgl.dataloading.NeighborSampler(
[15, 10, 5], prefetch_node_feats=['feat'], prefetch_labels=['label'])
train_dataloader = dgl.dataloading.DataLoader(
- dgl_g,
+ cugraph_g,
train_idx,
sampler,
device=device,
batch_size=1024,
shuffle=True,
drop_last=False,
num_workers=0)
```
Raw data
{
"_id": null,
"home_page": null,
"name": "cugraph-dgl-cu12",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "NVIDIA Corporation",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/0c/23/f0ede509a90cb95a87e3690b942a6c900efc338d612feea6380b9f9bde21/cugraph_dgl_cu12-24.12.0.tar.gz",
"platform": null,
"description": "# cugraph_dgl\n\n## Description\n\n[RAPIDS](https://rapids.ai) cugraph_dgl provides a duck-typed version of the [DGLGraph](https://docs.dgl.ai/api/python/dgl.DGLGraph.html#dgl.DGLGraph) class, which uses cugraph for storing graph structure and node/edge feature data. Using cugraph as the backend allows DGL users to access a collection of GPU accelerated algorithms for graph analytics, such as centrality computation and community detection.\n\n## Conda\n\nInstall and update cugraph-dgl and the required dependencies using the command:\n\n```\n# CUDA 11\nconda install -c rapidsai -c pytorch -c conda-forge -c nvidia -c dglteam/label/th23_cu118 cugraph-dgl\n\n# CUDA 12\nconda install -c rapidsai -c pytorch -c conda-forge -c nvidia -c dglteam/label/th23_cu121 cugraph-dgl\n```\n\n## Build from Source\n\n### Create the conda development environment\n```\nmamba env create -n cugraph_dgl_dev --file conda/cugraph_dgl_dev_11.6.yml\n```\n\n### Install in editable mode\n```\npip install -e .\n```\n\n### Run tests\n\n```\npytest tests/*\n```\n\n\n## Usage\n```diff\n\n+from cugraph_dgl.convert import cugraph_storage_from_heterograph\n+cugraph_g = cugraph_storage_from_heterograph(dgl_g)\n\nsampler = dgl.dataloading.NeighborSampler(\n [15, 10, 5], prefetch_node_feats=['feat'], prefetch_labels=['label'])\n\ntrain_dataloader = dgl.dataloading.DataLoader(\n- dgl_g,\n+ cugraph_g,\ntrain_idx,\nsampler,\ndevice=device,\nbatch_size=1024,\nshuffle=True,\ndrop_last=False,\nnum_workers=0)\n```\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "cugraph extensions for DGL",
"version": "24.12.0",
"project_urls": {
"Documentation": "https://docs.rapids.ai/api/cugraph/stable/",
"Homepage": "https://github.com/rapidsai/cugraph"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0c23f0ede509a90cb95a87e3690b942a6c900efc338d612feea6380b9f9bde21",
"md5": "e123aba952e6f320f9bf72402debaeda",
"sha256": "e0a06158cbe8b962a728ce6c7b1efc2ab9ff5472a5bbd629b70da9b57628a870"
},
"downloads": -1,
"filename": "cugraph_dgl_cu12-24.12.0.tar.gz",
"has_sig": false,
"md5_digest": "e123aba952e6f320f9bf72402debaeda",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 1486,
"upload_time": "2024-12-12T22:26:10",
"upload_time_iso_8601": "2024-12-12T22:26:10.751503Z",
"url": "https://files.pythonhosted.org/packages/0c/23/f0ede509a90cb95a87e3690b942a6c900efc338d612feea6380b9f9bde21/cugraph_dgl_cu12-24.12.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-12 22:26:10",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rapidsai",
"github_project": "cugraph",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "cugraph-dgl-cu12"
}