cugraph-equivariant-cu12


Namecugraph-equivariant-cu12 JSON
Version 24.6.0 PyPI version JSON
download
home_pageNone
SummaryFast GPU-based equivariant operations and convolutional layers.
upload_time2024-06-07 00:36:38
maintainerNone
docs_urlNone
authorNVIDIA Corporation
requires_python>=3.9
licenseApache 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # cugraph-equivariant

## Description

cugraph-equivariant library provides fast symmetry-preserving (equivariant) operations and convolutional layers, to accelerate the equivariant neural networks in drug discovery and other domains.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cugraph-equivariant-cu12",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "NVIDIA Corporation",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/60/9c/7b47f1f4e62d4d9fbe39f9dd2077a930ab841acbfac5b01cc5d06499e6a5/cugraph_equivariant_cu12-24.6.0.tar.gz",
    "platform": null,
    "description": "# cugraph-equivariant\n\n## Description\n\ncugraph-equivariant library provides fast symmetry-preserving (equivariant) operations and convolutional layers, to accelerate the equivariant neural networks in drug discovery and other domains.\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Fast GPU-based equivariant operations and convolutional layers.",
    "version": "24.6.0",
    "project_urls": {
        "Documentation": "https://docs.rapids.ai/api/cugraph/stable/api_docs/cugraph-ops/",
        "Homepage": "https://github.com/rapidsai/cugraph"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "609c7b47f1f4e62d4d9fbe39f9dd2077a930ab841acbfac5b01cc5d06499e6a5",
                "md5": "6f136412d1fad9372c3f1a370ca9b8cc",
                "sha256": "9942c981217e6f48b27e3aa2c4f53f52f5a9422107368247498072824be179bc"
            },
            "downloads": -1,
            "filename": "cugraph_equivariant_cu12-24.6.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6f136412d1fad9372c3f1a370ca9b8cc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 842,
            "upload_time": "2024-06-07T00:36:38",
            "upload_time_iso_8601": "2024-06-07T00:36:38.332098Z",
            "url": "https://files.pythonhosted.org/packages/60/9c/7b47f1f4e62d4d9fbe39f9dd2077a930ab841acbfac5b01cc5d06499e6a5/cugraph_equivariant_cu12-24.6.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-07 00:36:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "rapidsai",
    "github_project": "cugraph",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "cugraph-equivariant-cu12"
}
        
Elapsed time: 0.25632s