cumm-cu113


Namecumm-cu113 JSON
Version 0.5.3 PyPI version JSON
download
home_pagehttps://github.com/FindDefinition/cumm
SummaryCUda Matrix Multiply library
upload_time2024-06-12 15:54:31
maintainerNone
docs_urlNone
authorYan Yan
requires_python>=3.6
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# cumm
CUda Matrix Multiply library.

[![Build Status](https://github.com/FindDefinition/cumm/workflows/build/badge.svg)](https://github.com/FindDefinition/cumm/actions?query=workflow%3Abuild)

```cumm``` is developed during learning of [CUTLASS](https://github.com/NVIDIA/cutlass), which use too much c++ template and make code unmaintainable. So I develop [pccm](https://github.com/FindDefinition/PCCM), use python as meta programming language, to replace c++ template meta programming. 
Now ```pccm``` become a foundational framework of ```cumm``` and my other c++ project such as [spconv](https://github.com/traveller59/spconv). 
```cumm``` also contains a python asyncio-based gemm simulator that **share same meta program** with CUDA code, enable gemm visualization and easy debug experience.

## BREAKING CHANGES

* 0.3.1: tv::DType enum value changed, this will affect all binary code of tv::Tensor user. you must recompile all code if upgrade to cumm >= 0.3.1.

## News

* Ampere feature support (by [EvernightAurora](https://github.com/EvernightAurora))

## Install

### Prebuilt

We offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for linux (manylinux).

We offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for windows 10/11.

```pip install cumm``` for CPU-only

```pip install cumm-cu102``` for CUDA 10.2

```pip install cumm-cu113``` for CUDA 11.3

```pip install cumm-cu114``` for CUDA 11.4

```pip install cumm-cu117``` for CUDA 11.7

```pip install cumm-cu120``` for CUDA 12.0

### Build from source for development (JIT, recommend for develop)

**WARNING** Use code in [tags](https://github.com/FindDefinition/cumm/releases)!!! code in main branch may contain bugs.

The c++ code will be built automatically when you change c++ code in project.

#### Linux

0. uninstall cumm installed by pip. you must ensure no "cumm" exists in ```pip list | grep cumm```
1. install build-essential, install CUDA
2. ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```git checkout tags/<tag_name>```, ```pip install -e .```
3. in python, ```import cumm``` and wait for build finish.

#### Windows
0. uninstall spconv and cumm installed by pip. you must ensure no "cumm" exists in ```pip list | grep cumm```
1. install visual studio 2019 or newer. make sure C++ development component is installed. install CUDA
2. set [powershell script execution policy](https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.1)
3. start a new powershell, run ```tools/msvc_setup.ps1```
4. ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```git checkout tags/<tag_name>```, ```pip install -e .```
5. in python, ```import cumm``` and wait for build finish.

### Build wheel from source 

**WARNING** Use code in [tags](https://github.com/FindDefinition/cumm/releases)!!! code in main branch may contain bugs.

**WARNING**: If ```CUMM_CUDA_VERSION``` is set with a CUDA version, following steps will create a wheel named "cumm-cuxxx", not "cumm", this means you must use ```cumm-cuxxx``` in dependency of your project which depend on cumm, not ```cumm```. If ```CUMM_CUDA_VERSION``` isn't set, ```cumm``` will always built with CUDA, so the CUDA must exists in your system. The wheel name will be ```cumm``` even if it is built with cuda.

#### Linux

It's recommend to build Linux packages in [official build docker](https://github.com/FindDefinition/cumm/blob/main/.github/workflows/build.yaml). Build with CUDA support don't need a real GPU.

##### Build in Official Docker

1. select a cuda version. available: CUDA 11.1, 11.3, 11.4, 11.5, 12.0
2. (Example for CUDA 11.4) ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```docker run --rm -e PLAT=manylinux2014_x86_64 -e CUMM_CUDA_VERSION=114 -v `pwd`:/io scrin/manylinux2014-cuda:cu114-devel-1.0.0 bash -c "source /etc/bashrc && /io/tools/build-wheels.sh"```

##### Build in your environment

1. install build-essential, install CUDA
2. set env for installed cuda version. for example, ```export CUMM_CUDA_VERSION="11.4"```. If you want to build CPU-only, run ```export CUMM_CUDA_VERSION=""```. If ```CUMM_CUDA_VERSION``` isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be ```cumm```, otherwise ```cumm-cuxxx```
3. run ```export CUMM_DISABLE_JIT="1"```
4. run ```python setup.py bdist_wheel```+```pip install dists/xxx.whl```

#### Windows 10/11

1. install visual studio 2019 or newer. make sure C++ development package is installed. install CUDA
2. set [powershell script execution policy](https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.1)
3. start a new powershell, run ```tools/msvc_setup.ps1```
4. set env for installed cuda version. for example, ```$Env:CUMM_CUDA_VERSION = "11.4"```. If you want to build CPU-only, run ```$Env:CUMM_CUDA_VERSION = ""```. . If ```CUMM_CUDA_VERSION``` isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be ```cumm```, otherwise ```cumm-cuxxx```
4. run ```$Env:CUMM_DISABLE_JIT = "1"```
5. run ```python setup.py bdist_wheel```+```pip install dists/xxx.whl```

## Contributers

* [EvernightAurora](https://github.com/EvernightAurora): add ampere feature.

## Note
The work is done when the author is an employee at [Tusimple](https://www.tusimple.com/).

## LICENSE

Apache 2.0

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/FindDefinition/cumm",
    "name": "cumm-cu113",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Yan Yan",
    "author_email": "yanyan.sub@outlook.com",
    "download_url": null,
    "platform": null,
    "description": "\n# cumm\nCUda Matrix Multiply library.\n\n[![Build Status](https://github.com/FindDefinition/cumm/workflows/build/badge.svg)](https://github.com/FindDefinition/cumm/actions?query=workflow%3Abuild)\n\n```cumm``` is developed during learning of [CUTLASS](https://github.com/NVIDIA/cutlass), which use too much c++ template and make code unmaintainable. So I develop [pccm](https://github.com/FindDefinition/PCCM), use python as meta programming language, to replace c++ template meta programming. \nNow ```pccm``` become a foundational framework of ```cumm``` and my other c++ project such as [spconv](https://github.com/traveller59/spconv). \n```cumm``` also contains a python asyncio-based gemm simulator that **share same meta program** with CUDA code, enable gemm visualization and easy debug experience.\n\n## BREAKING CHANGES\n\n* 0.3.1: tv::DType enum value changed, this will affect all binary code of tv::Tensor user. you must recompile all code if upgrade to cumm >= 0.3.1.\n\n## News\n\n* Ampere feature support (by [EvernightAurora](https://github.com/EvernightAurora))\n\n## Install\n\n### Prebuilt\n\nWe offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for linux (manylinux).\n\nWe offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for windows 10/11.\n\n```pip install cumm``` for CPU-only\n\n```pip install cumm-cu102``` for CUDA 10.2\n\n```pip install cumm-cu113``` for CUDA 11.3\n\n```pip install cumm-cu114``` for CUDA 11.4\n\n```pip install cumm-cu117``` for CUDA 11.7\n\n```pip install cumm-cu120``` for CUDA 12.0\n\n### Build from source for development (JIT, recommend for develop)\n\n**WARNING** Use code in [tags](https://github.com/FindDefinition/cumm/releases)!!! code in main branch may contain bugs.\n\nThe c++ code will be built automatically when you change c++ code in project.\n\n#### Linux\n\n0. uninstall cumm installed by pip. you must ensure no \"cumm\" exists in ```pip list | grep cumm```\n1. install build-essential, install CUDA\n2. ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```git checkout tags/<tag_name>```, ```pip install -e .```\n3. in python, ```import cumm``` and wait for build finish.\n\n#### Windows\n0. uninstall spconv and cumm installed by pip. you must ensure no \"cumm\" exists in ```pip list | grep cumm```\n1. install visual studio 2019 or newer. make sure C++ development component is installed. install CUDA\n2. set [powershell script execution policy](https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.1)\n3. start a new powershell, run ```tools/msvc_setup.ps1```\n4. ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```git checkout tags/<tag_name>```, ```pip install -e .```\n5. in python, ```import cumm``` and wait for build finish.\n\n### Build wheel from source \n\n**WARNING** Use code in [tags](https://github.com/FindDefinition/cumm/releases)!!! code in main branch may contain bugs.\n\n**WARNING**: If ```CUMM_CUDA_VERSION``` is set with a CUDA version, following steps will create a wheel named \"cumm-cuxxx\", not \"cumm\", this means you must use ```cumm-cuxxx``` in dependency of your project which depend on cumm, not ```cumm```. If ```CUMM_CUDA_VERSION``` isn't set, ```cumm``` will always built with CUDA, so the CUDA must exists in your system. The wheel name will be ```cumm``` even if it is built with cuda.\n\n#### Linux\n\nIt's recommend to build Linux packages in [official build docker](https://github.com/FindDefinition/cumm/blob/main/.github/workflows/build.yaml). Build with CUDA support don't need a real GPU.\n\n##### Build in Official Docker\n\n1. select a cuda version. available: CUDA 11.1, 11.3, 11.4, 11.5, 12.0\n2. (Example for CUDA 11.4) ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```docker run --rm -e PLAT=manylinux2014_x86_64 -e CUMM_CUDA_VERSION=114 -v `pwd`:/io scrin/manylinux2014-cuda:cu114-devel-1.0.0 bash -c \"source /etc/bashrc && /io/tools/build-wheels.sh\"```\n\n##### Build in your environment\n\n1. install build-essential, install CUDA\n2. set env for installed cuda version. for example, ```export CUMM_CUDA_VERSION=\"11.4\"```. If you want to build CPU-only, run ```export CUMM_CUDA_VERSION=\"\"```. If ```CUMM_CUDA_VERSION``` isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be ```cumm```, otherwise ```cumm-cuxxx```\n3. run ```export CUMM_DISABLE_JIT=\"1\"```\n4. run ```python setup.py bdist_wheel```+```pip install dists/xxx.whl```\n\n#### Windows 10/11\n\n1. install visual studio 2019 or newer. make sure C++ development package is installed. install CUDA\n2. set [powershell script execution policy](https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.1)\n3. start a new powershell, run ```tools/msvc_setup.ps1```\n4. set env for installed cuda version. for example, ```$Env:CUMM_CUDA_VERSION = \"11.4\"```. If you want to build CPU-only, run ```$Env:CUMM_CUDA_VERSION = \"\"```. . If ```CUMM_CUDA_VERSION``` isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be ```cumm```, otherwise ```cumm-cuxxx```\n4. run ```$Env:CUMM_DISABLE_JIT = \"1\"```\n5. run ```python setup.py bdist_wheel```+```pip install dists/xxx.whl```\n\n## Contributers\n\n* [EvernightAurora](https://github.com/EvernightAurora): add ampere feature.\n\n## Note\nThe work is done when the author is an employee at [Tusimple](https://www.tusimple.com/).\n\n## LICENSE\n\nApache 2.0\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "CUda Matrix Multiply library",
    "version": "0.5.3",
    "project_urls": {
        "Homepage": "https://github.com/FindDefinition/cumm"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8718667277c450ce4db962cc694ed7284506179cd2fa0450f4dec8f72c85ce83",
                "md5": "2040132463320f2da5c2a2481ef25ce6",
                "sha256": "86e7817440a839f8199b4edaaea29bcd5f2dea772cfc56bfcafaef3e89ba9ce5"
            },
            "downloads": -1,
            "filename": "cumm_cu113-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "2040132463320f2da5c2a2481ef25ce6",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.6",
            "size": 22608653,
            "upload_time": "2024-06-12T15:54:31",
            "upload_time_iso_8601": "2024-06-12T15:54:31.714761Z",
            "url": "https://files.pythonhosted.org/packages/87/18/667277c450ce4db962cc694ed7284506179cd2fa0450f4dec8f72c85ce83/cumm_cu113-0.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "316209b1488dc2661e0cc14551ca7522e6c41845aa54e381598e0d8019d3c432",
                "md5": "ccdb1e61f23b8d6614e157e9fb205dd3",
                "sha256": "2c80640fbcfd620d409c80ec5ca2cc60bdc3a5842d680246a679d888273d7780"
            },
            "downloads": -1,
            "filename": "cumm_cu113-0.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "ccdb1e61f23b8d6614e157e9fb205dd3",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.6",
            "size": 22611612,
            "upload_time": "2024-06-12T15:54:37",
            "upload_time_iso_8601": "2024-06-12T15:54:37.295002Z",
            "url": "https://files.pythonhosted.org/packages/31/62/09b1488dc2661e0cc14551ca7522e6c41845aa54e381598e0d8019d3c432/cumm_cu113-0.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "85464ed0d029f0dcaba32ca4854b0576bd5f93d4b01698c8b6ac6497f2349066",
                "md5": "d91d4c3398766ace91dd5683e4569972",
                "sha256": "3e6f16add782685361afe6176e9448bb77f96c34549092fdd1bc9fbbb1b12d42"
            },
            "downloads": -1,
            "filename": "cumm_cu113-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "d91d4c3398766ace91dd5683e4569972",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": ">=3.6",
            "size": 22603152,
            "upload_time": "2024-06-12T15:54:51",
            "upload_time_iso_8601": "2024-06-12T15:54:51.545531Z",
            "url": "https://files.pythonhosted.org/packages/85/46/4ed0d029f0dcaba32ca4854b0576bd5f93d4b01698c8b6ac6497f2349066/cumm_cu113-0.5.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "afd6854f23867e1ac5324c5729bbaf9a36a2d96421b33ed25fe9a70530af79de",
                "md5": "229a3b9653074254b1a7a31ad1b78040",
                "sha256": "10d2da822c438dcd9e8387fc4c64d309c18e7568179eed2c7051accd6f06615d"
            },
            "downloads": -1,
            "filename": "cumm_cu113-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "229a3b9653074254b1a7a31ad1b78040",
            "packagetype": "bdist_wheel",
            "python_version": "cp38",
            "requires_python": ">=3.6",
            "size": 22604624,
            "upload_time": "2024-06-12T15:54:57",
            "upload_time_iso_8601": "2024-06-12T15:54:57.972076Z",
            "url": "https://files.pythonhosted.org/packages/af/d6/854f23867e1ac5324c5729bbaf9a36a2d96421b33ed25fe9a70530af79de/cumm_cu113-0.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3106dc6587e48bb14f0c743b817a40c0f822d9fe01128621f5f8d78030e97570",
                "md5": "57b73bf9311e6145c8eb360d6a1b0786",
                "sha256": "52af682bc8c12f8d7d9cc42bf81852b290e8fd71df590f488d230d46c5d59eb4"
            },
            "downloads": -1,
            "filename": "cumm_cu113-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "57b73bf9311e6145c8eb360d6a1b0786",
            "packagetype": "bdist_wheel",
            "python_version": "cp39",
            "requires_python": ">=3.6",
            "size": 22608167,
            "upload_time": "2024-06-12T15:55:16",
            "upload_time_iso_8601": "2024-06-12T15:55:16.235186Z",
            "url": "https://files.pythonhosted.org/packages/31/06/dc6587e48bb14f0c743b817a40c0f822d9fe01128621f5f8d78030e97570/cumm_cu113-0.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-12 15:54:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "FindDefinition",
    "github_project": "cumm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "cumm-cu113"
}
        
Elapsed time: 0.55990s