# cumm
CUda Matrix Multiply library.
[](https://github.com/FindDefinition/cumm/actions?query=workflow%3Abuild)
```cumm``` is developed during learning of [CUTLASS](https://github.com/NVIDIA/cutlass), which use too much c++ template and make code unmaintainable. So I develop [pccm](https://github.com/FindDefinition/PCCM), use python as meta programming language, to replace c++ template meta programming.
Now ```pccm``` become a foundational framework of ```cumm``` and my other c++ project such as [spconv](https://github.com/traveller59/spconv).
```cumm``` also contains a python asyncio-based gemm simulator that **share same meta program** with CUDA code, enable gemm visualization and easy debug experience.
## BREAKING CHANGES
* 0.3.1: tv::DType enum value changed, this will affect all binary code of tv::Tensor user. you must recompile all code if upgrade to cumm >= 0.3.1.
## News
* Ampere feature support (by [EvernightAurora](https://github.com/EvernightAurora))
## Install
### Prebuilt
We offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for linux (manylinux).
We offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for windows 10/11.
```pip install cumm``` for CPU-only
```pip install cumm-cu102``` for CUDA 10.2
```pip install cumm-cu113``` for CUDA 11.3
```pip install cumm-cu114``` for CUDA 11.4
```pip install cumm-cu117``` for CUDA 11.7
```pip install cumm-cu120``` for CUDA 12.0
### Build from source for development (JIT, recommend for develop)
**WARNING** Use code in [tags](https://github.com/FindDefinition/cumm/releases)!!! code in main branch may contain bugs.
The c++ code will be built automatically when you change c++ code in project.
#### Linux
0. uninstall cumm installed by pip. you must ensure no "cumm" exists in ```pip list | grep cumm```
1. install build-essential, install CUDA
2. ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```git checkout tags/<tag_name>```, ```pip install -e .```
3. in python, ```import cumm``` and wait for build finish.
#### Windows
0. uninstall spconv and cumm installed by pip. you must ensure no "cumm" exists in ```pip list | grep cumm```
1. install visual studio 2019 or newer. make sure C++ development component is installed. install CUDA
2. set [powershell script execution policy](https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.1)
3. start a new powershell, run ```tools/msvc_setup.ps1```
4. ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```git checkout tags/<tag_name>```, ```pip install -e .```
5. in python, ```import cumm``` and wait for build finish.
### Build wheel from source
**WARNING** Use code in [tags](https://github.com/FindDefinition/cumm/releases)!!! code in main branch may contain bugs.
**WARNING**: If ```CUMM_CUDA_VERSION``` is set with a CUDA version, following steps will create a wheel named "cumm-cuxxx", not "cumm", this means you must use ```cumm-cuxxx``` in dependency of your project which depend on cumm, not ```cumm```. If ```CUMM_CUDA_VERSION``` isn't set, ```cumm``` will always built with CUDA, so the CUDA must exists in your system. The wheel name will be ```cumm``` even if it is built with cuda.
#### Linux
It's recommend to build Linux packages in [official build docker](https://github.com/FindDefinition/cumm/blob/main/.github/workflows/build.yaml). Build with CUDA support don't need a real GPU.
##### Build in Official Docker
1. select a cuda version. available: CUDA 11.1, 11.3, 11.4, 11.5, 12.0
2. (Example for CUDA 11.4) ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```docker run --rm -e PLAT=manylinux2014_x86_64 -e CUMM_CUDA_VERSION=114 -v `pwd`:/io scrin/manylinux2014-cuda:cu114-devel-1.0.0 bash -c "source /etc/bashrc && /io/tools/build-wheels.sh"```
##### Build in your environment
1. install build-essential, install CUDA
2. set env for installed cuda version. for example, ```export CUMM_CUDA_VERSION="11.4"```. If you want to build CPU-only, run ```export CUMM_CUDA_VERSION=""```. If ```CUMM_CUDA_VERSION``` isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be ```cumm```, otherwise ```cumm-cuxxx```
3. run ```export CUMM_DISABLE_JIT="1"```
4. run ```python setup.py bdist_wheel```+```pip install dists/xxx.whl```
#### Windows 10/11
1. install visual studio 2019 or newer. make sure C++ development package is installed. install CUDA
2. set [powershell script execution policy](https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.1)
3. start a new powershell, run ```tools/msvc_setup.ps1```
4. set env for installed cuda version. for example, ```$Env:CUMM_CUDA_VERSION = "11.4"```. If you want to build CPU-only, run ```$Env:CUMM_CUDA_VERSION = ""```. . If ```CUMM_CUDA_VERSION``` isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be ```cumm```, otherwise ```cumm-cuxxx```
4. run ```$Env:CUMM_DISABLE_JIT = "1"```
5. run ```python setup.py bdist_wheel```+```pip install dists/xxx.whl```
## Contributers
* [EvernightAurora](https://github.com/EvernightAurora): add ampere feature.
## Note
The work is done when the author is an employee at [Tusimple](https://www.tusimple.com/).
## LICENSE
Apache 2.0
Raw data
{
"_id": null,
"home_page": "https://github.com/FindDefinition/cumm",
"name": "cumm-cu122",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": "Yan Yan",
"author_email": "yanyan.sub@outlook.com",
"download_url": null,
"platform": null,
"description": "\r\n# cumm\r\nCUda Matrix Multiply library.\r\n\r\n[](https://github.com/FindDefinition/cumm/actions?query=workflow%3Abuild)\r\n\r\n```cumm``` is developed during learning of [CUTLASS](https://github.com/NVIDIA/cutlass), which use too much c++ template and make code unmaintainable. So I develop [pccm](https://github.com/FindDefinition/PCCM), use python as meta programming language, to replace c++ template meta programming. \r\nNow ```pccm``` become a foundational framework of ```cumm``` and my other c++ project such as [spconv](https://github.com/traveller59/spconv). \r\n```cumm``` also contains a python asyncio-based gemm simulator that **share same meta program** with CUDA code, enable gemm visualization and easy debug experience.\r\n\r\n## BREAKING CHANGES\r\n\r\n* 0.3.1: tv::DType enum value changed, this will affect all binary code of tv::Tensor user. you must recompile all code if upgrade to cumm >= 0.3.1.\r\n\r\n## News\r\n\r\n* Ampere feature support (by [EvernightAurora](https://github.com/EvernightAurora))\r\n\r\n## Install\r\n\r\n### Prebuilt\r\n\r\nWe offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for linux (manylinux).\r\n\r\nWe offer python 3.7-3.11 and cuda 10.2/11.3/11.4/11.7/12.0 prebuilt binaries for windows 10/11.\r\n\r\n```pip install cumm``` for CPU-only\r\n\r\n```pip install cumm-cu102``` for CUDA 10.2\r\n\r\n```pip install cumm-cu113``` for CUDA 11.3\r\n\r\n```pip install cumm-cu114``` for CUDA 11.4\r\n\r\n```pip install cumm-cu117``` for CUDA 11.7\r\n\r\n```pip install cumm-cu120``` for CUDA 12.0\r\n\r\n### Build from source for development (JIT, recommend for develop)\r\n\r\n**WARNING** Use code in [tags](https://github.com/FindDefinition/cumm/releases)!!! code in main branch may contain bugs.\r\n\r\nThe c++ code will be built automatically when you change c++ code in project.\r\n\r\n#### Linux\r\n\r\n0. uninstall cumm installed by pip. you must ensure no \"cumm\" exists in ```pip list | grep cumm```\r\n1. install build-essential, install CUDA\r\n2. ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```git checkout tags/<tag_name>```, ```pip install -e .```\r\n3. in python, ```import cumm``` and wait for build finish.\r\n\r\n#### Windows\r\n0. uninstall spconv and cumm installed by pip. you must ensure no \"cumm\" exists in ```pip list | grep cumm```\r\n1. install visual studio 2019 or newer. make sure C++ development component is installed. install CUDA\r\n2. set [powershell script execution policy](https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.1)\r\n3. start a new powershell, run ```tools/msvc_setup.ps1```\r\n4. ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```git checkout tags/<tag_name>```, ```pip install -e .```\r\n5. in python, ```import cumm``` and wait for build finish.\r\n\r\n### Build wheel from source \r\n\r\n**WARNING** Use code in [tags](https://github.com/FindDefinition/cumm/releases)!!! code in main branch may contain bugs.\r\n\r\n**WARNING**: If ```CUMM_CUDA_VERSION``` is set with a CUDA version, following steps will create a wheel named \"cumm-cuxxx\", not \"cumm\", this means you must use ```cumm-cuxxx``` in dependency of your project which depend on cumm, not ```cumm```. If ```CUMM_CUDA_VERSION``` isn't set, ```cumm``` will always built with CUDA, so the CUDA must exists in your system. The wheel name will be ```cumm``` even if it is built with cuda.\r\n\r\n#### Linux\r\n\r\nIt's recommend to build Linux packages in [official build docker](https://github.com/FindDefinition/cumm/blob/main/.github/workflows/build.yaml). Build with CUDA support don't need a real GPU.\r\n\r\n##### Build in Official Docker\r\n\r\n1. select a cuda version. available: CUDA 11.1, 11.3, 11.4, 11.5, 12.0\r\n2. (Example for CUDA 11.4) ```git clone https://github.com/FindDefinition/cumm```, ```cd ./cumm```, ```docker run --rm -e PLAT=manylinux2014_x86_64 -e CUMM_CUDA_VERSION=114 -v `pwd`:/io scrin/manylinux2014-cuda:cu114-devel-1.0.0 bash -c \"source /etc/bashrc && /io/tools/build-wheels.sh\"```\r\n\r\n##### Build in your environment\r\n\r\n1. install build-essential, install CUDA\r\n2. set env for installed cuda version. for example, ```export CUMM_CUDA_VERSION=\"11.4\"```. If you want to build CPU-only, run ```export CUMM_CUDA_VERSION=\"\"```. If ```CUMM_CUDA_VERSION``` isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be ```cumm```, otherwise ```cumm-cuxxx```\r\n3. run ```export CUMM_DISABLE_JIT=\"1\"```\r\n4. run ```python setup.py bdist_wheel```+```pip install dists/xxx.whl```\r\n\r\n#### Windows 10/11\r\n\r\n1. install visual studio 2019 or newer. make sure C++ development package is installed. install CUDA\r\n2. set [powershell script execution policy](https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_execution_policies?view=powershell-7.1)\r\n3. start a new powershell, run ```tools/msvc_setup.ps1```\r\n4. set env for installed cuda version. for example, ```$Env:CUMM_CUDA_VERSION = \"11.4\"```. If you want to build CPU-only, run ```$Env:CUMM_CUDA_VERSION = \"\"```. . If ```CUMM_CUDA_VERSION``` isn't set, you need to ensure cuda libraries are inside OS search path, and the built wheel name will be ```cumm```, otherwise ```cumm-cuxxx```\r\n4. run ```$Env:CUMM_DISABLE_JIT = \"1\"```\r\n5. run ```python setup.py bdist_wheel```+```pip install dists/xxx.whl```\r\n\r\n## Contributers\r\n\r\n* [EvernightAurora](https://github.com/EvernightAurora): add ampere feature.\r\n\r\n## Note\r\nThe work is done when the author is an employee at [Tusimple](https://www.tusimple.com/).\r\n\r\n## LICENSE\r\n\r\nApache 2.0\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "CUda Matrix Multiply library",
"version": "0.6.3",
"project_urls": {
"Homepage": "https://github.com/FindDefinition/cumm"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0bec7f2df167598800d70230444c1d06e631449fc32686e4e0d12de6d7cef9c1",
"md5": "dafc6cd47c230c7ef50f7239aaff1135",
"sha256": "97a1aa35eb02fdd8541d935df7691386262dc49df275f402a22b4d9726ac0432"
},
"downloads": -1,
"filename": "cumm_cu122-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "dafc6cd47c230c7ef50f7239aaff1135",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 26310943,
"upload_time": "2024-08-18T08:58:57",
"upload_time_iso_8601": "2024-08-18T08:58:57.936764Z",
"url": "https://files.pythonhosted.org/packages/0b/ec/7f2df167598800d70230444c1d06e631449fc32686e4e0d12de6d7cef9c1/cumm_cu122-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "6d254ec49bb4f472286509ef060126db8c08982f775febba190f945fbada4aa5",
"md5": "23f847225fc0291db90b705cd8929e6e",
"sha256": "12b9ac2f0f424da52b1af3562c1a0000a618b56664f9f9bd814b42a41114f6bc"
},
"downloads": -1,
"filename": "cumm_cu122-0.6.3-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "23f847225fc0291db90b705cd8929e6e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1207586,
"upload_time": "2024-08-18T08:43:59",
"upload_time_iso_8601": "2024-08-18T08:43:59.511310Z",
"url": "https://files.pythonhosted.org/packages/6d/25/4ec49bb4f472286509ef060126db8c08982f775febba190f945fbada4aa5/cumm_cu122-0.6.3-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ed03204287ea336526e3a1546181167b324c6831829e879378f31c71ca801b19",
"md5": "3f0ffb44456cd810a780a89a5a59ad3c",
"sha256": "68e6000daa0eac8399582537deb7eafcdddbe242ee878f6264aaacb374210948"
},
"downloads": -1,
"filename": "cumm_cu122-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "3f0ffb44456cd810a780a89a5a59ad3c",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 26318965,
"upload_time": "2024-08-18T08:59:01",
"upload_time_iso_8601": "2024-08-18T08:59:01.964265Z",
"url": "https://files.pythonhosted.org/packages/ed/03/204287ea336526e3a1546181167b324c6831829e879378f31c71ca801b19/cumm_cu122-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "08924bb29781611b3da806175c57e0e8048e3dc1e2bad7085abee5fbb4d3c64a",
"md5": "659e345406daf13091f28bad20b387ad",
"sha256": "7780e390c2245309f3e2847164d717cf52ce1351c985f03fb9162f26e99bd57b"
},
"downloads": -1,
"filename": "cumm_cu122-0.6.3-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "659e345406daf13091f28bad20b387ad",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1208908,
"upload_time": "2024-08-18T08:48:48",
"upload_time_iso_8601": "2024-08-18T08:48:48.979769Z",
"url": "https://files.pythonhosted.org/packages/08/92/4bb29781611b3da806175c57e0e8048e3dc1e2bad7085abee5fbb4d3c64a/cumm_cu122-0.6.3-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e1446b3334d9f402aea812df376602675323e53aca4943d025d8c75a8ca7e40f",
"md5": "6113650d16e1fe9295acb133c2f8ee38",
"sha256": "9467cbd467764bca705de87843c0d5084ada24f8ab9b80cd577d71bc1ac65c98"
},
"downloads": -1,
"filename": "cumm_cu122-0.6.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "6113650d16e1fe9295acb133c2f8ee38",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 26321302,
"upload_time": "2024-08-18T08:59:05",
"upload_time_iso_8601": "2024-08-18T08:59:05.778742Z",
"url": "https://files.pythonhosted.org/packages/e1/44/6b3334d9f402aea812df376602675323e53aca4943d025d8c75a8ca7e40f/cumm_cu122-0.6.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "91b796d78b5593d18392c4191166d37e234b3c2aacb8ce4035a9635a41b136e8",
"md5": "3a597bac3b552c5382106b86c820820a",
"sha256": "491e0463060f27ee026d61448237661688c8e23d221330ce946288933079f902"
},
"downloads": -1,
"filename": "cumm_cu122-0.6.3-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "3a597bac3b552c5382106b86c820820a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1206025,
"upload_time": "2024-08-18T08:46:04",
"upload_time_iso_8601": "2024-08-18T08:46:04.173392Z",
"url": "https://files.pythonhosted.org/packages/91/b7/96d78b5593d18392c4191166d37e234b3c2aacb8ce4035a9635a41b136e8/cumm_cu122-0.6.3-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "89ec31b30b4478f382f74fa38501c9c252fc2d347668a4d4d1cee3f811ecfd40",
"md5": "627b48f5ccbd3d42529a767ce4264529",
"sha256": "ad3edc6476c897fb0be24013f7aef19200635a1307ccbeeaa999d2806f6315bc"
},
"downloads": -1,
"filename": "cumm_cu122-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "627b48f5ccbd3d42529a767ce4264529",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 26314426,
"upload_time": "2024-08-18T08:59:10",
"upload_time_iso_8601": "2024-08-18T08:59:10.238716Z",
"url": "https://files.pythonhosted.org/packages/89/ec/31b30b4478f382f74fa38501c9c252fc2d347668a4d4d1cee3f811ecfd40/cumm_cu122-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "26f28fa408b9444e054a2674c6f84cfa354072d17004dd1cb71262e9c53f91b7",
"md5": "d2700de4082455a05233d188dff881af",
"sha256": "90265e5984048f764f4bab836de7c997fc301fc96980105bcaa48d5418e28be6"
},
"downloads": -1,
"filename": "cumm_cu122-0.6.3-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "d2700de4082455a05233d188dff881af",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1207553,
"upload_time": "2024-08-18T08:47:03",
"upload_time_iso_8601": "2024-08-18T08:47:03.987228Z",
"url": "https://files.pythonhosted.org/packages/26/f2/8fa408b9444e054a2674c6f84cfa354072d17004dd1cb71262e9c53f91b7/cumm_cu122-0.6.3-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d08d504d5d1e7a04c4e1cae981db628c6be1e7c95135059a1c257fea30033df8",
"md5": "dabf3f66a5454ca5f16531678485f918",
"sha256": "cb0879a97e17879bdb9b6a54039026a132bb24054f4b0a880bffceb82959a339"
},
"downloads": -1,
"filename": "cumm_cu122-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "dabf3f66a5454ca5f16531678485f918",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 26312934,
"upload_time": "2024-08-18T08:59:12",
"upload_time_iso_8601": "2024-08-18T08:59:12.960164Z",
"url": "https://files.pythonhosted.org/packages/d0/8d/504d5d1e7a04c4e1cae981db628c6be1e7c95135059a1c257fea30033df8/cumm_cu122-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "81b2c5b76bb7238e55b9d297f07de2750b66d691ed9bbb3758ccf29ee96f0904",
"md5": "73e00711f6dca3bf2e6ed7d0881160c7",
"sha256": "06e387bc46ff1744b5150fd85be2ceb05ef800fc4f71d55abbc9c3a7294b85b0"
},
"downloads": -1,
"filename": "cumm_cu122-0.6.3-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "73e00711f6dca3bf2e6ed7d0881160c7",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1207635,
"upload_time": "2024-08-18T08:47:42",
"upload_time_iso_8601": "2024-08-18T08:47:42.813840Z",
"url": "https://files.pythonhosted.org/packages/81/b2/c5b76bb7238e55b9d297f07de2750b66d691ed9bbb3758ccf29ee96f0904/cumm_cu122-0.6.3-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-18 08:58:57",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "FindDefinition",
"github_project": "cumm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "cumm-cu122"
}