currentscape


Namecurrentscape JSON
Version 1.0.16 PyPI version JSON
download
home_pageNone
SummaryModule to easily plot currentscape.
upload_time2024-10-02 14:41:28
maintainerNone
docs_urlNone
authorBlue Brain Project, EPFL
requires_python>=3.8
licenseCurrentscape is licensed under the Apache License, unless noted otherwise, e.g., for external dependencies. See file COPYING for the full license. The 'original paper plot' example is under the CC0 1.0 license, and the 'use case' example is under the CC-BY-NC-SA license, as specified by the LICENSE.txt file in each example repository. Copyright 2023 Blue Brain Project / EPFL Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Currentscape
============


+----------------+------------+
| Latest Release | |pypi|     |
+----------------+------------+
| Documentation  | |docs|     |
+----------------+------------+
| License        | |license|  |
+----------------+------------+
| Build Status 	 | |build|    |
+----------------+------------+
| Coverage       | |coverage| |
+----------------+------------+
| Gitter         | |gitter|   |
+----------------+------------+
| Citation       | |zenodo|   |
+----------------+------------+

Introduction
============

Currentscape is a Python tool enabling scientists to easily plot the currents in electrical neuron models.
The code is based on the paper `Alonso and Marder, 2019 <https://doi.org/10.7554/eLife.42722>`__.

Currentscape figures plot the percentage of inward and outward ionic membrane currents,
the total inward and outward currents, as well as the voltage in function of time.
It allows modellers to see which currents play a role at any given time during a simulation, and check in depth the current dynamics.

.. image:: https://raw.githubusercontent.com/BlueBrain/Currentscape/main/doc/source/images/plot.png

Citation
========

When you use this Currentscape software for your research, we ask you to cite the following publications (this includes poster presentations):

.. code-block:: 

    @article {alonsomarder2019,
        article_type = {journal},
        title = {Visualization of currents in neural models with similar behavior and different conductance densities},
        author = {Alonso, Leandro M and Marder, Eve},
        editor = {Westbrook, Gary L and Skinner, Frances K and Lankarany, Milad and Britton, Oliver},
        volume = 8,
        year = 2019,
        month = {jan},
        pub_date = {2019-01-31},
        pages = {e42722},
        citation = {eLife 2019;8:e42722},
        doi = {10.7554/eLife.42722},
        url = {https://doi.org/10.7554/eLife.42722},
        abstract = {Conductance-based models of neural activity produce large amounts of data that can be hard to visualize and interpret. We introduce visualization methods to display the dynamics of the ionic currents and to display the models’ response to perturbations. To visualize the currents’ dynamics, we compute the percent contribution of each current and display them over time using stacked-area plots. The waveform of the membrane potential and the contribution of each current change as the models are perturbed. To represent these changes over a range of the perturbation control parameter, we compute and display the distributions of these waveforms. We illustrate these procedures in six examples of bursting model neurons with similar activity but that differ as much as threefold in their conductance densities. These visualization methods provide heuristic insight into why individual neurons or networks with similar behavior can respond widely differently to perturbations.},
        keywords = {neuronal oscillators, Na+ channels, Ca++ channels, K+ channels, conductance-based, ionic channels},
        journal = {eLife},
        issn = {2050-084X},
        publisher = {eLife Sciences Publications, Ltd},
    }
    
    @article{currentscape, 
        title={Currentscape}, 
        DOI={10.5281/zenodo.8046373}, 
        abstractNote={Currentscape is a Python tool enabling scientists to easily plot the currents in electrical neuron models. The code is based on the paper Alonso and Marder, 2019. Currentscape figures plot the percentage of inward and outward ionic membrane currents, the total inward and outward currents, as well as the voltage in function of time. It allows modellers to see which currents play a role at any given time during a simulation, and check in depth the current dynamics.}, 
        publisher={Zenodo}, 
        author={Jaquier, Aurélien and Tuncel, Anil and Van Geit, Werner and Alonso, Leandro M and Marder, Eve}, 
        year={2023}, 
        month={Jun} 
    }

Support
=======

We are providing support on `Gitter <https://gitter.im/BlueBrain/Currentscape>`_. We suggest you create tickets on the `Github issue tracker <https://github.com/BlueBrain/Currentscape/issues>`_ in case you encounter problems while using the software or if you have some suggestions.

Main dependencies
=================

- `Python 3.8+ <https://www.python.org/downloads/release/python-380/>`_
- `Numpy <https://numpy.org/>`_ (automatically installed by pip)
- `Palettable <https://github.com/jiffyclub/palettable>`_ (automatically installed by pip)

Installation
============

Currentscape can be pip installed with the following command:

.. code-block:: python

    pip install currentscape

If you want to be able to run the Currentscape examples, you will need to also install the example dependencies:

.. code-block:: python

    pip install currentscape[example]

Quick Start
===========

Below is an example of a ball and stick model in NEURON with simple Hodgkin-Huxley mechanisms, to which a step stimulus is applied.

The voltage and ionic currents are recorded and fed to Currentscape, along with a configuration dictionary containing the current names to be displayed in the legend.

To run the code you will first have to install NEURON package:

.. code-block:: python

    pip install neuron

When you then execute the following python code, a window should open with the currentscape plot:

.. code-block:: python

    import numpy as np
    from neuron import h
    from neuron.units import ms, mV
    import currentscape


    def main():
        current_names = ["Potassium", "Sodium", "Leak"]

        voltage, potassium, sodium, leak = run_sim()

        config = {
            "output": {
                "savefig": True,
                "dir": ".",
                "fname": "quickstart_plot",
                "extension": "png",
                "dpi": 300,
                "transparent": False
            },
            "current": {"names": current_names},
            "voltage": {"ylim": [-90, 50]},
            "legendtextsize": 5,
            "adjust": {
                "left": 0.15,
                "right": 0.8,
                "top": 1.0,
                "bottom": 0.0
            }
        }

        fig = currentscape.plot(voltage, [potassium, sodium, leak], config)
        fig.show()


    def run_sim():
        h.load_file('stdrun.hoc')

        soma = h.Section(name='soma')
        dend = h.Section(name='dend')

        dend.connect(soma(1))

        soma.L = soma.diam = 12.6157
        dend.L = 200
        dend.diam = 1

        for sec in h.allsec():
            sec.Ra = 100    # Axial resistance in Ohm * cm
            sec.cm = 1      # Membrane capacitance in micro Farads / cm^2

        # Insert active Hodgkin-Huxley current in the soma
        soma.insert('hh')
        for seg in soma:
            seg.hh.gnabar = 0.12  # Sodium conductance in S/cm2
            seg.hh.gkbar = 0.036  # Potassium conductance in S/cm2
            seg.hh.gl = 0.0003    # Leak conductance in S/cm2
            seg.hh.el = -54.3     # Reversal potential in mV

        # Insert passive current in the dendrite
        dend.insert('pas')
        for seg in dend:
            seg.pas.g = 0.001  # Passive conductance in S/cm2
            seg.pas.e = -65    # Leak reversal potential mV

        stim = h.IClamp(dend(1))
        stim.delay = 5
        stim.dur = 10
        stim.amp = 0.1

        t_vec = h.Vector()
        v_vec = h.Vector()
        ik_vec = h.Vector()
        ina_vec = h.Vector()
        il_vec = h.Vector()
        t_vec.record(h._ref_t)
        v_vec.record(soma(0.5)._ref_v)
        ik_vec.record(soma(0.5)._ref_ik)
        ina_vec.record(soma(0.5)._ref_ina)
        il_vec.record(soma(0.5)._ref_il_hh)

        h.finitialize(-65 * mV)
        h.continuerun(25 * ms)

        to_pA = 10 * soma(0.5).area()  # turn mA/cm2 (*um2) into pA
        voltage = np.asarray(v_vec)
        potassium = np.asarray(ik_vec) * to_pA
        sodium = np.asarray(ina_vec) * to_pA
        leak = np.asarray(il_vec) * to_pA

        return voltage, potassium, sodium, leak


    if __name__ == "__main__":
        main()

When you run this code in Python, it will generate the following currentscape plot (in a window, and on disk as quickstart_plot.png):

.. image:: https://raw.githubusercontent.com/BlueBrain/Currentscape/main/doc/source/images/quickstart_plot.png

Tutorial
========

A more detailed explanation on how to use Currentscape, as well as other examples can be found on the `tutorial page <Tutorial.rst>`_.

API Documentation
=================

The API documentation can be found on `ReadTheDocs <https://currentscape.readthedocs.io>`_.

Funding & Acknowledgements
==========================

We wish to thank the authors of `Alonso and Marder, 2019 <https://doi.org/10.7554/eLife.42722>`__ to let us integrate a part of their `code <https://datadryad.org/stash/dataset/doi:10.5061/dryad.d0779mb>`_ into this repository.

The part of the code in this repository developed by the EPFL Blue Brain Project was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government's ETH Board of the Swiss Federal Institutes of Technology.


.. |pypi| image:: https://img.shields.io/pypi/v/currentscape.svg
               :target: https://pypi.org/project/currentscape/
               :alt: latest release

.. |docs| image:: https://readthedocs.org/projects/currentscape/badge/?version=latest
               :target: https://currentscape.readthedocs.io/
               :alt: latest documentation

.. |license| image:: https://img.shields.io/pypi/l/currentscape.svg
                  :target: https://github.com/BlueBrain/Currentscape/blob/main/LICENSE.txt
                  :alt: license

.. |build| image:: https://github.com/BlueBrain/Currentscape/workflows/test.yml/badge.svg?branch=main
                :target: https://github.com/BlueBrain/Currentscape/actions
                :alt: actions build status

.. |coverage| image:: https://codecov.io/github/BlueBrain/Currentscape/coverage.svg?branch=main
                   :target: https://codecov.io/gh/BlueBrain/currentscape
                   :alt: coverage

.. |gitter| image:: https://badges.gitter.im/Join%20Chat.svg
                 :target: https://gitter.im/BlueBrain/Currentscape
                 :alt: Join the chat at https://gitter.im/BlueBrain/Currentscape

.. |zenodo| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.8046484.svg
                :target: https://doi.org/10.5281/zenodo.8046373

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "currentscape",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "Blue Brain Project, EPFL",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/e8/34/99c6cf8ffde356cbff4a79d9b57afef9f9d408f98b357fcec479289cf12b/currentscape-1.0.16.tar.gz",
    "platform": null,
    "description": "Currentscape\n============\n\n\n+----------------+------------+\n| Latest Release | |pypi|     |\n+----------------+------------+\n| Documentation  | |docs|     |\n+----------------+------------+\n| License        | |license|  |\n+----------------+------------+\n| Build Status \t | |build|    |\n+----------------+------------+\n| Coverage       | |coverage| |\n+----------------+------------+\n| Gitter         | |gitter|   |\n+----------------+------------+\n| Citation       | |zenodo|   |\n+----------------+------------+\n\nIntroduction\n============\n\nCurrentscape is a Python tool enabling scientists to easily plot the currents in electrical neuron models.\nThe code is based on the paper `Alonso and Marder, 2019 <https://doi.org/10.7554/eLife.42722>`__.\n\nCurrentscape figures plot the percentage of inward and outward ionic membrane currents,\nthe total inward and outward currents, as well as the voltage in function of time.\nIt allows modellers to see which currents play a role at any given time during a simulation, and check in depth the current dynamics.\n\n.. image:: https://raw.githubusercontent.com/BlueBrain/Currentscape/main/doc/source/images/plot.png\n\nCitation\n========\n\nWhen you use this Currentscape software for your research, we ask you to cite the following publications (this includes poster presentations):\n\n.. code-block:: \n\n    @article {alonsomarder2019,\n        article_type = {journal},\n        title = {Visualization of currents in neural models with similar behavior and different conductance densities},\n        author = {Alonso, Leandro M and Marder, Eve},\n        editor = {Westbrook, Gary L and Skinner, Frances K and Lankarany, Milad and Britton, Oliver},\n        volume = 8,\n        year = 2019,\n        month = {jan},\n        pub_date = {2019-01-31},\n        pages = {e42722},\n        citation = {eLife 2019;8:e42722},\n        doi = {10.7554/eLife.42722},\n        url = {https://doi.org/10.7554/eLife.42722},\n        abstract = {Conductance-based models of neural activity produce large amounts of data that can be hard to visualize and interpret. We introduce visualization methods to display the dynamics of the ionic currents and to display the models\u2019 response to perturbations. To visualize the currents\u2019 dynamics, we compute the percent contribution of each current and display them over time using stacked-area plots. The waveform of the membrane potential and the contribution of each current change as the models are perturbed. To represent these changes over a range of the perturbation control parameter, we compute and display the distributions of these waveforms. We illustrate these procedures in six examples of bursting model neurons with similar activity but that differ as much as threefold in their conductance densities. These visualization methods provide heuristic insight into why individual neurons or networks with similar behavior can respond widely differently to perturbations.},\n        keywords = {neuronal oscillators, Na+ channels, Ca++ channels, K+ channels, conductance-based, ionic channels},\n        journal = {eLife},\n        issn = {2050-084X},\n        publisher = {eLife Sciences Publications, Ltd},\n    }\n    \n    @article{currentscape, \n        title={Currentscape}, \n        DOI={10.5281/zenodo.8046373}, \n        abstractNote={Currentscape is a Python tool enabling scientists to easily plot the currents in electrical neuron models. The code is based on the paper Alonso and Marder, 2019. Currentscape figures plot the percentage of inward and outward ionic membrane currents, the total inward and outward currents, as well as the voltage in function of time. It allows modellers to see which currents play a role at any given time during a simulation, and check in depth the current dynamics.}, \n        publisher={Zenodo}, \n        author={Jaquier, Aur\u00e9lien and Tuncel, Anil and Van Geit, Werner and Alonso, Leandro M and Marder, Eve}, \n        year={2023}, \n        month={Jun} \n    }\n\nSupport\n=======\n\nWe are providing support on `Gitter <https://gitter.im/BlueBrain/Currentscape>`_. We suggest you create tickets on the `Github issue tracker <https://github.com/BlueBrain/Currentscape/issues>`_ in case you encounter problems while using the software or if you have some suggestions.\n\nMain dependencies\n=================\n\n- `Python 3.8+ <https://www.python.org/downloads/release/python-380/>`_\n- `Numpy <https://numpy.org/>`_ (automatically installed by pip)\n- `Palettable <https://github.com/jiffyclub/palettable>`_ (automatically installed by pip)\n\nInstallation\n============\n\nCurrentscape can be pip installed with the following command:\n\n.. code-block:: python\n\n    pip install currentscape\n\nIf you want to be able to run the Currentscape examples, you will need to also install the example dependencies:\n\n.. code-block:: python\n\n    pip install currentscape[example]\n\nQuick Start\n===========\n\nBelow is an example of a ball and stick model in NEURON with simple Hodgkin-Huxley mechanisms, to which a step stimulus is applied.\n\nThe voltage and ionic currents are recorded and fed to Currentscape, along with a configuration dictionary containing the current names to be displayed in the legend.\n\nTo run the code you will first have to install NEURON package:\n\n.. code-block:: python\n\n    pip install neuron\n\nWhen you then execute the following python code, a window should open with the currentscape plot:\n\n.. code-block:: python\n\n    import numpy as np\n    from neuron import h\n    from neuron.units import ms, mV\n    import currentscape\n\n\n    def main():\n        current_names = [\"Potassium\", \"Sodium\", \"Leak\"]\n\n        voltage, potassium, sodium, leak = run_sim()\n\n        config = {\n            \"output\": {\n                \"savefig\": True,\n                \"dir\": \".\",\n                \"fname\": \"quickstart_plot\",\n                \"extension\": \"png\",\n                \"dpi\": 300,\n                \"transparent\": False\n            },\n            \"current\": {\"names\": current_names},\n            \"voltage\": {\"ylim\": [-90, 50]},\n            \"legendtextsize\": 5,\n            \"adjust\": {\n                \"left\": 0.15,\n                \"right\": 0.8,\n                \"top\": 1.0,\n                \"bottom\": 0.0\n            }\n        }\n\n        fig = currentscape.plot(voltage, [potassium, sodium, leak], config)\n        fig.show()\n\n\n    def run_sim():\n        h.load_file('stdrun.hoc')\n\n        soma = h.Section(name='soma')\n        dend = h.Section(name='dend')\n\n        dend.connect(soma(1))\n\n        soma.L = soma.diam = 12.6157\n        dend.L = 200\n        dend.diam = 1\n\n        for sec in h.allsec():\n            sec.Ra = 100    # Axial resistance in Ohm * cm\n            sec.cm = 1      # Membrane capacitance in micro Farads / cm^2\n\n        # Insert active Hodgkin-Huxley current in the soma\n        soma.insert('hh')\n        for seg in soma:\n            seg.hh.gnabar = 0.12  # Sodium conductance in S/cm2\n            seg.hh.gkbar = 0.036  # Potassium conductance in S/cm2\n            seg.hh.gl = 0.0003    # Leak conductance in S/cm2\n            seg.hh.el = -54.3     # Reversal potential in mV\n\n        # Insert passive current in the dendrite\n        dend.insert('pas')\n        for seg in dend:\n            seg.pas.g = 0.001  # Passive conductance in S/cm2\n            seg.pas.e = -65    # Leak reversal potential mV\n\n        stim = h.IClamp(dend(1))\n        stim.delay = 5\n        stim.dur = 10\n        stim.amp = 0.1\n\n        t_vec = h.Vector()\n        v_vec = h.Vector()\n        ik_vec = h.Vector()\n        ina_vec = h.Vector()\n        il_vec = h.Vector()\n        t_vec.record(h._ref_t)\n        v_vec.record(soma(0.5)._ref_v)\n        ik_vec.record(soma(0.5)._ref_ik)\n        ina_vec.record(soma(0.5)._ref_ina)\n        il_vec.record(soma(0.5)._ref_il_hh)\n\n        h.finitialize(-65 * mV)\n        h.continuerun(25 * ms)\n\n        to_pA = 10 * soma(0.5).area()  # turn mA/cm2 (*um2) into pA\n        voltage = np.asarray(v_vec)\n        potassium = np.asarray(ik_vec) * to_pA\n        sodium = np.asarray(ina_vec) * to_pA\n        leak = np.asarray(il_vec) * to_pA\n\n        return voltage, potassium, sodium, leak\n\n\n    if __name__ == \"__main__\":\n        main()\n\nWhen you run this code in Python, it will generate the following currentscape plot (in a window, and on disk as quickstart_plot.png):\n\n.. image:: https://raw.githubusercontent.com/BlueBrain/Currentscape/main/doc/source/images/quickstart_plot.png\n\nTutorial\n========\n\nA more detailed explanation on how to use Currentscape, as well as other examples can be found on the `tutorial page <Tutorial.rst>`_.\n\nAPI Documentation\n=================\n\nThe API documentation can be found on `ReadTheDocs <https://currentscape.readthedocs.io>`_.\n\nFunding & Acknowledgements\n==========================\n\nWe wish to thank the authors of `Alonso and Marder, 2019 <https://doi.org/10.7554/eLife.42722>`__ to let us integrate a part of their `code <https://datadryad.org/stash/dataset/doi:10.5061/dryad.d0779mb>`_ into this repository.\n\nThe part of the code in this repository developed by the EPFL Blue Brain Project was supported by funding to the Blue Brain Project, a research center of the \u00c9cole polytechnique f\u00e9d\u00e9rale de Lausanne (EPFL), from the Swiss government's ETH Board of the Swiss Federal Institutes of Technology.\n\n\n.. |pypi| image:: https://img.shields.io/pypi/v/currentscape.svg\n               :target: https://pypi.org/project/currentscape/\n               :alt: latest release\n\n.. |docs| image:: https://readthedocs.org/projects/currentscape/badge/?version=latest\n               :target: https://currentscape.readthedocs.io/\n               :alt: latest documentation\n\n.. |license| image:: https://img.shields.io/pypi/l/currentscape.svg\n                  :target: https://github.com/BlueBrain/Currentscape/blob/main/LICENSE.txt\n                  :alt: license\n\n.. |build| image:: https://github.com/BlueBrain/Currentscape/workflows/test.yml/badge.svg?branch=main\n                :target: https://github.com/BlueBrain/Currentscape/actions\n                :alt: actions build status\n\n.. |coverage| image:: https://codecov.io/github/BlueBrain/Currentscape/coverage.svg?branch=main\n                   :target: https://codecov.io/gh/BlueBrain/currentscape\n                   :alt: coverage\n\n.. |gitter| image:: https://badges.gitter.im/Join%20Chat.svg\n                 :target: https://gitter.im/BlueBrain/Currentscape\n                 :alt: Join the chat at https://gitter.im/BlueBrain/Currentscape\n\n.. |zenodo| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.8046484.svg\n                :target: https://doi.org/10.5281/zenodo.8046373\n",
    "bugtrack_url": null,
    "license": "Currentscape is licensed under the Apache License, unless noted otherwise, e.g., for external dependencies. See file COPYING for the full license. The 'original paper plot' example is under the CC0 1.0 license, and the 'use case' example is under the CC-BY-NC-SA license, as specified by the LICENSE.txt file in each example repository.   Copyright 2023 Blue Brain Project / EPFL  Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at  http://www.apache.org/licenses/LICENSE-2.0  Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.",
    "summary": "Module to easily plot currentscape.",
    "version": "1.0.16",
    "project_urls": {
        "Documentation": "https://currentscape.readthedocs.io/en/latest",
        "Homepage": "https://github.com/BlueBrain/Currentscape",
        "Repository": "https://github.com/BlueBrain/Currentscape.git",
        "Source": "https://github.com/BlueBrain/Currentscape",
        "Tracker": "https://github.com/BlueBrain/Currentscape/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bac3af12b9ee9315ac06e370b70d686d915494d249faae8cd29233326dc8dc4e",
                "md5": "f71da1eb854004b24344b026f12f049c",
                "sha256": "189f07803004d48c8097c17c97d13928725e6257809108625f802747518a9b42"
            },
            "downloads": -1,
            "filename": "currentscape-1.0.16-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f71da1eb854004b24344b026f12f049c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 339976,
            "upload_time": "2024-10-02T14:41:26",
            "upload_time_iso_8601": "2024-10-02T14:41:26.828520Z",
            "url": "https://files.pythonhosted.org/packages/ba/c3/af12b9ee9315ac06e370b70d686d915494d249faae8cd29233326dc8dc4e/currentscape-1.0.16-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e83499c6cf8ffde356cbff4a79d9b57afef9f9d408f98b357fcec479289cf12b",
                "md5": "8a71de887a56cc481e730b7b1d64d1a0",
                "sha256": "eaf922326af64291706de761087d373b39e1b62202e984c7f9a90f6d7f642ee5"
            },
            "downloads": -1,
            "filename": "currentscape-1.0.16.tar.gz",
            "has_sig": false,
            "md5_digest": "8a71de887a56cc481e730b7b1d64d1a0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 343323,
            "upload_time": "2024-10-02T14:41:28",
            "upload_time_iso_8601": "2024-10-02T14:41:28.722672Z",
            "url": "https://files.pythonhosted.org/packages/e8/34/99c6cf8ffde356cbff4a79d9b57afef9f9d408f98b357fcec479289cf12b/currentscape-1.0.16.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-02 14:41:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "BlueBrain",
    "github_project": "Currentscape",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "currentscape"
}
        
Elapsed time: 0.35768s