# CustardPy: Docker image for 3D genome analysis
<img src = "image/CustardPy.jpg" width = 700ptx>
This repository contains
- Source code of **CustardPy** (PyPI),
- Dockerfile of **CustardPy** Docker image,
- [Full Manual](https://custardpy.readthedocs.io), and
- Tutorial data of Hi-C and Micro-C analysis using demo data.
## 0. Changelog
See [Changelog](https://github.com/rnakato/CustardPy/blob/main/ChangeLog.md)
## 1. Installation
Docker image is available at [DockerHub](https://hub.docker.com/r/rnakato/custardpy).
### 1.1 Docker
To use the docker command, type:
# Pull docker image
docker pull rnakato/custardpy
# Container login
docker run --rm -it rnakato/custardpy /bin/bash
# Execute a command
docker run --rm -it -v (your directory):/opt/work rnakato/custardpy <command>
When calling loops using Juicer HICCUPS, supply the ``--gpus all`` option to allow GPU computation (GPU card needed):
docker run --gpus all -it --rm -it -v (your directory):/opt/work rnakato/custardpy call_HiCCUPS.sh
- user:password
- ubuntu:ubuntu
### 1.2 Singularity
Singularity is the alternative way to use CustardPy.
With this command you can build the singularity file (.sif) of CustardPy:
singularity build custardpy.sif docker://rnakato/custardpy
Instead, you can download the CustardPy singularity image from our [Dropbox](https://www.dropbox.com/scl/fo/lptb68dirr9wcncy77wsv/h?rlkey=whhcaxuvxd1cz4fqoeyzy63bf&dl=0) (We use singularity version 3.8.5).
Then you can run CustardPy with the command:
singularity exec custardpy.sif <command>
Singularity will automatically mount the current directory. If you want to access the files in the other directory, use the `--bind` option, for instance:
singularity exec --bind /work custardpy.sif <command>
This command mounts the `/work` directory.
When calling loops using Juicer HICCUPS, supply ``--nv`` option to allow GPU computation (GPU card needed):
singularity exec --bind /work custardpy.sif call_HiCCUPS.sh
## 2. Quickstart
# download Churros/tutorial directory
git clone https://github.com/rnakato/CustardPy.git
cd CustardPy/tutorial/Hi-C/
# download fastq and genome data and make index
bash 00_getdata.sh
# Execute Juicer pipeline
bash QuickStart_juicer.sh
## 3. Usage
See https://custardpy.readthedocs.io for the detailed Manual.
## 4. Build Docker image from Dockerfile
First clone and move to the repository
git clone https://github.com/rnakato/CustardPy.git
cd CustardPy/Docker
Then type:
docker build -f Dokerfile.<version> -t <account>/custardpy_juicer .
## 6. Reference
- Nakato R, Sakata T, Wang J, Nagai LAE, Nagaoka Y, Oba GM, Bando M, Shirahige K, Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors, *Nature Communications*, 2023. doi: [10.1038/s41467-023-41316-4](https://www.nature.com/articles/s41467-023-41316-4)
Raw data
{
"_id": null,
"home_page": "https://github.com/rnakato/custardpy",
"name": "custardpy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "Hi-C analysis, 3D genome, NGS",
"author": "Ryuichiro Nakato",
"author_email": "rnakato@iqb.u-tokyo.ac.jp",
"download_url": null,
"platform": null,
"description": "# CustardPy: Docker image for 3D genome analysis\n\n<img src = \"image/CustardPy.jpg\" width = 700ptx>\n\nThis repository contains\n- Source code of **CustardPy** (PyPI),\n- Dockerfile of **CustardPy** Docker image, \n- [Full Manual](https://custardpy.readthedocs.io), and\n- Tutorial data of Hi-C and Micro-C analysis using demo data.\n\n## 0. Changelog\n\nSee [Changelog](https://github.com/rnakato/CustardPy/blob/main/ChangeLog.md)\n\n## 1. Installation\n\nDocker image is available at [DockerHub](https://hub.docker.com/r/rnakato/custardpy).\n\n### 1.1 Docker\n\nTo use the docker command, type:\n\n # Pull docker image\n docker pull rnakato/custardpy\n\n # Container login\n docker run --rm -it rnakato/custardpy /bin/bash\n # Execute a command\n docker run --rm -it -v (your directory):/opt/work rnakato/custardpy <command>\n\nWhen calling loops using Juicer HICCUPS, supply the ``--gpus all`` option to allow GPU computation (GPU card needed):\n\n docker run --gpus all -it --rm -it -v (your directory):/opt/work rnakato/custardpy call_HiCCUPS.sh\n\n- user:password\n - ubuntu:ubuntu\n\n### 1.2 Singularity\n\nSingularity is the alternative way to use CustardPy.\nWith this command you can build the singularity file (.sif) of CustardPy:\n\n singularity build custardpy.sif docker://rnakato/custardpy\n \nInstead, you can download the CustardPy singularity image from our [Dropbox](https://www.dropbox.com/scl/fo/lptb68dirr9wcncy77wsv/h?rlkey=whhcaxuvxd1cz4fqoeyzy63bf&dl=0) (We use singularity version 3.8.5).\n\nThen you can run CustardPy with the command:\n\n singularity exec custardpy.sif <command>\n\nSingularity will automatically mount the current directory. If you want to access the files in the other directory, use the `--bind` option, for instance:\n\n singularity exec --bind /work custardpy.sif <command>\n\nThis command mounts the `/work` directory.\n\nWhen calling loops using Juicer HICCUPS, supply ``--nv`` option to allow GPU computation (GPU card needed):\n\n singularity exec --bind /work custardpy.sif call_HiCCUPS.sh\n\n## 2. Quickstart\n\n # download Churros/tutorial directory\n git clone https://github.com/rnakato/CustardPy.git\n cd CustardPy/tutorial/Hi-C/\n\n # download fastq and genome data and make index\n bash 00_getdata.sh\n\n # Execute Juicer pipeline\n bash QuickStart_juicer.sh\n\n## 3. Usage\n\nSee https://custardpy.readthedocs.io for the detailed Manual.\n\n## 4. Build Docker image from Dockerfile\n\nFirst clone and move to the repository\n\n git clone https://github.com/rnakato/CustardPy.git\n cd CustardPy/Docker\n\nThen type:\n\n docker build -f Dokerfile.<version> -t <account>/custardpy_juicer .\n\n## 6. Reference\n\n- Nakato R, Sakata T, Wang J, Nagai LAE, Nagaoka Y, Oba GM, Bando M, Shirahige K, Context-dependent perturbations in chromatin folding and the transcriptome by cohesin and related factors, *Nature Communications*, 2023. doi: [10.1038/s41467-023-41316-4](https://www.nature.com/articles/s41467-023-41316-4)\n",
"bugtrack_url": null,
"license": "GPL3.0",
"summary": "Hi-C analysis tools by Python3",
"version": "0.7.3",
"project_urls": {
"Homepage": "https://github.com/rnakato/custardpy"
},
"split_keywords": [
"hi-c analysis",
" 3d genome",
" ngs"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "57b6c52785ba733061fed7afcc9c4ad09b5eabfa9b0d73605861cfdee1acfc24",
"md5": "cafd231f71607c826f22f35595ae55d8",
"sha256": "120af2251144419f84c34462a3ab179daab4f5840a3661c05e6819645f05587b"
},
"downloads": -1,
"filename": "custardpy-0.7.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "cafd231f71607c826f22f35595ae55d8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 48682,
"upload_time": "2024-09-12T09:09:59",
"upload_time_iso_8601": "2024-09-12T09:09:59.629328Z",
"url": "https://files.pythonhosted.org/packages/57/b6/c52785ba733061fed7afcc9c4ad09b5eabfa9b0d73605861cfdee1acfc24/custardpy-0.7.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-12 09:09:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rnakato",
"github_project": "custardpy",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "custardpy"
}