Name | cuxfilter-cu11 JSON |
Version |
24.12.0
JSON |
| download |
home_page | None |
Summary | GPU accelerated cross filtering with cuDF |
upload_time | 2024-12-12 22:24:01 |
maintainer | None |
docs_url | None |
author | NVIDIA Corporation |
requires_python | >=3.10 |
license | Apache 2.0 |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# <div align="left"><img src="https://rapids.ai/assets/images/rapids_logo.png" width="90px"/> cuxfilter
cuxfilter ( ku-cross-filter ) is a [RAPIDS](https://github.com/rapidsai) framework to connect web visualizations to GPU accelerated crossfiltering. Inspired by the javascript version of the [original](https://github.com/crossfilter/crossfilter), it enables interactive and super fast multi-dimensional filtering of 100 million+ row tabular datasets via [cuDF](https://github.com/rapidsai/cudf).
## RAPIDS Viz
cuxfilter is one of the core projects of the “RAPIDS viz” team. Taking the axiom that “a slider is worth a thousand queries” from @lmeyerov to heart, we want to enable fast exploratory data analytics through an easier-to-use pythonic notebook interface.
As there are many fantastic visualization libraries available for the web, our general principle is not to create our own viz library, but to enhance others with faster acceleration, larger datasets, and better dev UX. **Basically, we want to take the headache out of interconnecting multiple charts to a GPU backend, so you can get to visually exploring data faster.**
By the way, cuxfilter is best used to interact with large (1 million+) tabular datasets. GPU’s are fast, but accessing that speedup requires some architecture overhead that isn’t worthwhile for small datasets.
For more detailed requirements, see below.
## cuxfilter Architecture
The current version of cuxfilter leverages jupyter notebook and bokeh server to reduce architecture and installation complexity.
![layout architecture](./docs/_images/RAPIDS_cuxfilter.png)
### Open Source Projects
cuxfilter wouldn’t be possible without using these great open source projects:
- [Bokeh](https://docs.bokeh.org/en/latest/)
- [DataShader](http://datashader.org/)
- [Panel](https://panel.pyviz.org/)
- [Falcon](https://github.com/uwdata/falcon)
- [Jupyter](https://jupyter.org/about)
### Where is the original cuxfilter and Mortgage Viz Demo?
The original version (0.2) of cuxfilter, most known for the backend powering the Mortgage Viz Demo, has been moved into the [`GTC-2018-mortgage-visualization branch`](https://github.com/rapidsai/cuxfilter/tree/GTC-2018-mortgage-visualization) branch. As it has a much more complicated backend and javascript API, we’ve decided to focus more on the streamlined notebook focused version here.
## Usage
### Example 1
[![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/rapidsai/cuxfilter/blob/branch-22.02/notebooks/auto_accidents_example.ipynb) [<img src="https://img.shields.io/badge/-Setup Studio Lab Environment-gray.svg">](./notebooks/README.md#amazon-sagemaker-studio-lab)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rapidsai/cuxfilter/blob/branch-22.02/notebooks/auto_accidents_example.ipynb) [<img src="https://img.shields.io/badge/-Setup Colab Environment-gray.svg">](./notebooks/README.md#google-colab)
```python
import cuxfilter
#update data_dir if you have downloaded datasets elsewhere
DATA_DIR = './data'
from cuxfilter.sampledata import datasets_check
datasets_check('auto_accidents', base_dir=DATA_DIR)
cux_df = cuxfilter.DataFrame.from_arrow(DATA_DIR+'/auto_accidents.arrow')
cux_df.data['ST_CASE'] = cux_df.data['ST_CASE'].astype('float64')
label_map = {1: 'Sunday', 2: 'Monday', 3: 'Tuesday', 4: 'Wednesday', 5: 'Thursday', 6: 'Friday', 7: 'Saturday', 9: 'Unknown'}
cux_df.data['DAY_WEEK_STR'] = cux_df.data.DAY_WEEK.map(label_map)
gtc_demo_red_blue_palette = [ "#3182bd", "#6baed6", "#7b8ed8", "#e26798", "#ff0068" , "#323232" ]
#declare charts
chart1 = cuxfilter.charts.scatter(x='dropoff_x', y='dropoff_y', aggregate_col='DAY_WEEK', aggregate_fn='mean',
color_palette=gtc_demo_red_blue_palette, tile_provider='CartoLight', unselected_alpha=0.2,
pixel_shade_type='linear')
chart2 = cuxfilter.charts.multi_select('YEAR')
chart3 = cuxfilter.charts.bar('DAY_WEEK_STR')
chart4 = cuxfilter.charts.bar('MONTH')
#declare dashboard
d = cux_df.dashboard([chart1, chart3, chart4], sidebar=[chart2], layout=cuxfilter.layouts.feature_and_double_base, title='Auto Accident Dataset')
# run the dashboard as a webapp:
# Bokeh and Datashader based charts also have a `save` tool on the side toolbar, which can download and save the individual chart when interacting with the dashboard.
# d.show('jupyter-notebook/lab-url')
#run the dashboard within the notebook cell
d.app()
```
![output dashboard](./docs/_images/demo.gif)
### Example 2
[![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/rapidsai/cuxfilter/blob/branch-22.02/notebooks/Mortgage_example.ipynb) [<img src="https://img.shields.io/badge/-Setup Studio Lab Environment-gray.svg">](./notebooks/README.md#amazon-sagemaker-studio-lab)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rapidsai/cuxfilter/blob/branch-22.02/notebooks/Mortgage_example.ipynb) [<img src="https://img.shields.io/badge/-Setup Colab Environment-gray.svg">](./notebooks/README.md#google-colab)
```python
import cuxfilter
#update data_dir if you have downloaded datasets elsewhere
DATA_DIR = './data'
from cuxfilter.sampledata import datasets_check
datasets_check('mortgage', base_dir=DATA_DIR)
cux_df = cuxfilter.DataFrame.from_arrow(DATA_DIR + '/146M_predictions_v2.arrow')
geoJSONSource='https://raw.githubusercontent.com/rapidsai/cuxfilter/GTC-2018-mortgage-visualization/javascript/demos/GTC%20demo/src/data/zip3-ms-rhs-lessprops.json'
chart0 = cuxfilter.charts.choropleth( x='zip', color_column='delinquency_12_prediction', color_aggregate_fn='mean',
elevation_column='current_actual_upb', elevation_factor=0.00001, elevation_aggregate_fn='sum',
geoJSONSource=geoJSONSource
)
chart2 = cuxfilter.charts.bar('delinquency_12_prediction',data_points=50)
chart3 = cuxfilter.charts.range_slider('borrower_credit_score',data_points=50)
chart1 = cuxfilter.charts.drop_down('dti')
#declare dashboard
d = cux_df.dashboard([chart0, chart2],sidebar=[chart3, chart1], layout=cuxfilter.layouts.feature_and_double_base,theme = cuxfilter.themes.dark, title='Mortgage Dashboard')
# run the dashboard within the notebook cell
# Bokeh and Datashader based charts also have a `save` tool on the side toolbar, which can download and save the individual chart when interacting with the dashboard.
# d.app()
#run the dashboard as a webapp:
# if running on a port other than localhost:8888, run d.show(jupyter-notebook-lab-url:port)
d.show()
```
![output dashboard](./docs/_images/demo2.gif)
## Documentation
Full documentation can be found [on the RAPIDS docs page](https://docs.rapids.ai/api/cuxfilter/stable/).
Troubleshooting help can be found [on our troubleshooting page](https://docs.rapids.ai/api/cuxfilter/stable/installation.html#troubleshooting).
## General Dependencies
- python
- cudf
- datashader
- cupy
- panel
- bokeh
- pyproj
- geopandas
- jupyter-server-proxy
## Quick Start
Please see the [Demo Docker Repository](https://hub.docker.com/r/rapidsai/rapidsai/), choosing a tag based on the NVIDIA CUDA version you’re running. This provides a ready to run Docker container with example notebooks and data, showcasing how you can utilize cuxfilter, cuDF and other RAPIDS libraries.
## Installation
### CUDA/GPU requirements
- CUDA 11.2+
- Volta architecture or newer (Compute Capability >=7.0)
### Conda
cuxfilter can be installed with conda. You can get a minimal conda installation with [miniforge](https://github.com/conda-forge/miniforge).
For the nightly version of `cuxfilter`:
```bash
# for CUDA 12.5
conda install -c rapidsai-nightly -c conda-forge -c nvidia \
cuxfilter=24.12 python=3.12 cuda-version=12.5
# for CUDA 11.8
conda install -c rapidsai-nightly -c conda-forge -c nvidia \
cuxfilter=24.12 python=3.12 cuda-version=11.8
```
For the stable version of `cuxfilter`:
```bash
# for CUDA 12.5
conda install -c rapidsai -c conda-forge -c nvidia \
cuxfilter python=3.12 cuda-version=12.5
# for CUDA 11.8
conda install -c rapidsai -c conda-forge -c nvidia \
cuxfilter python=3.12 cuda-version=11.8
```
Note: cuxfilter is supported only on Linux, and with Python versions 3.10, 3.11, and 3.12.
> Above are sample install snippets for cuxfilter, see the [Get RAPIDS version picker](https://rapids.ai/start.html) for installing the latest `cuxfilter` version.
### PyPI
Install cuxfilter from PyPI using pip:
```bash
# for CUDA 12.0
pip install cuxfilter-cu12 -extra-index-url=https://pypi.nvidia.com
# for CUDA 11.8
pip install cuxfilter-cu11 -extra-index-url=https://pypi.nvidia.com
```
See the [Get RAPIDS version picker](https://rapids.ai/start.html) for more OS and version info.
### Build/Install from Source
See [build instructions](CONTRIBUTING.md#setting-up-your-build-environment).
## Troubleshooting
**bokeh server in jupyter lab**
To run the bokeh server in a jupyter lab, install jupyterlab dependencies
```bash
conda install -c conda-forge jupyterlab
jupyter labextension install @pyviz/jupyterlab_pyviz
jupyter labextension install jupyterlab_bokeh
```
## Download Datasets
1. Auto download datasets
The notebooks inside `python/notebooks` already have a check function which verifies whether the example dataset is downloaded, and downloads it if it's not.
2. Download manually
While in the directory you want the datasets to be saved, execute the following
> Note: Auto Accidents dataset has corrupted coordinate data from the years 2012-2014
```bash
#go the the environment where cuxfilter is installed. Skip if in a docker container
source activate test_env
#download and extract the datasets
curl https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2015-01.csv --create-dirs -o ./nyc_taxi.csv
curl https://data.rapids.ai/viz-data/146M_predictions_v2.arrow.gz --create-dirs -o ./146M_predictions_v2.arrow.gz
curl https://data.rapids.ai/viz-data/auto_accidents.arrow.gz --create-dirs -o ./auto_accidents.arrow.gz
python -c "from cuxfilter.sampledata import datasets_check; datasets_check(base_dir='./')"
```
## Guides and Layout Templates
Currently supported layout templates and example code can be found on the [layouts page](https://rapidsai.github.io/cuxfilter/layouts/Layouts.html).
### Currently Supported Charts
| Library | Chart type |
| ------------- | ------------------------------------------------------------------------------------------------ |
| bokeh | bar |
| datashader | scatter, scatter_geo, line, stacked_lines, heatmap, graph |
| panel_widgets | range_slider, date_range_slider, float_slider, int_slider, drop_down, multi_select, card, number |
| custom | view_dataframe |
| deckgl | choropleth(3d and 2d) |
## Contributing Developers Guide
cuxfilter acts like a connector library and it is easy to add support for new libraries. The `python/cuxfilter/charts/core` directory has all the core chart classes which can be inherited and used to implement a few (viz related) functions and support dashboarding in cuxfilter directly.
You can see the examples to implement viz libraries in the bokeh and cudatashader directories. Let us know if you would like to add a chart by opening a feature request issue or submitting a PR.
For more details, check out the [contributing guide](./CONTRIBUTING.md).
## Future Work
cuxfilter development is in early stages and on going. See what we are planning next on the [projects page](https://github.com/rapidsai/cuxfilter/projects).
Raw data
{
"_id": null,
"home_page": null,
"name": "cuxfilter-cu11",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "NVIDIA Corporation",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/c1/10/0d864d457b9c937f7243c497de87be155542fdcd00618aa7662c6d58aa62/cuxfilter_cu11-24.12.0.tar.gz",
"platform": null,
"description": "# <div align=\"left\"><img src=\"https://rapids.ai/assets/images/rapids_logo.png\" width=\"90px\"/> cuxfilter\n\ncuxfilter ( ku-cross-filter ) is a [RAPIDS](https://github.com/rapidsai) framework to connect web visualizations to GPU accelerated crossfiltering. Inspired by the javascript version of the [original](https://github.com/crossfilter/crossfilter), it enables interactive and super fast multi-dimensional filtering of 100 million+ row tabular datasets via [cuDF](https://github.com/rapidsai/cudf).\n\n## RAPIDS Viz\n\ncuxfilter is one of the core projects of the \u201cRAPIDS viz\u201d team. Taking the axiom that \u201ca slider is worth a thousand queries\u201d from @lmeyerov to heart, we want to enable fast exploratory data analytics through an easier-to-use pythonic notebook interface.\n\nAs there are many fantastic visualization libraries available for the web, our general principle is not to create our own viz library, but to enhance others with faster acceleration, larger datasets, and better dev UX. **Basically, we want to take the headache out of interconnecting multiple charts to a GPU backend, so you can get to visually exploring data faster.**\n\nBy the way, cuxfilter is best used to interact with large (1 million+) tabular datasets. GPU\u2019s are fast, but accessing that speedup requires some architecture overhead that isn\u2019t worthwhile for small datasets.\n\nFor more detailed requirements, see below.\n\n## cuxfilter Architecture\n\nThe current version of cuxfilter leverages jupyter notebook and bokeh server to reduce architecture and installation complexity.\n\n![layout architecture](./docs/_images/RAPIDS_cuxfilter.png)\n\n### Open Source Projects\n\ncuxfilter wouldn\u2019t be possible without using these great open source projects:\n\n- [Bokeh](https://docs.bokeh.org/en/latest/)\n- [DataShader](http://datashader.org/)\n- [Panel](https://panel.pyviz.org/)\n- [Falcon](https://github.com/uwdata/falcon)\n- [Jupyter](https://jupyter.org/about)\n\n### Where is the original cuxfilter and Mortgage Viz Demo?\n\nThe original version (0.2) of cuxfilter, most known for the backend powering the Mortgage Viz Demo, has been moved into the [`GTC-2018-mortgage-visualization branch`](https://github.com/rapidsai/cuxfilter/tree/GTC-2018-mortgage-visualization) branch. As it has a much more complicated backend and javascript API, we\u2019ve decided to focus more on the streamlined notebook focused version here.\n\n## Usage\n\n### Example 1\n\n[![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/rapidsai/cuxfilter/blob/branch-22.02/notebooks/auto_accidents_example.ipynb) [<img src=\"https://img.shields.io/badge/-Setup Studio Lab Environment-gray.svg\">](./notebooks/README.md#amazon-sagemaker-studio-lab)\n\n[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rapidsai/cuxfilter/blob/branch-22.02/notebooks/auto_accidents_example.ipynb) [<img src=\"https://img.shields.io/badge/-Setup Colab Environment-gray.svg\">](./notebooks/README.md#google-colab)\n\n```python\nimport cuxfilter\n\n#update data_dir if you have downloaded datasets elsewhere\nDATA_DIR = './data'\nfrom cuxfilter.sampledata import datasets_check\ndatasets_check('auto_accidents', base_dir=DATA_DIR)\n\ncux_df = cuxfilter.DataFrame.from_arrow(DATA_DIR+'/auto_accidents.arrow')\ncux_df.data['ST_CASE'] = cux_df.data['ST_CASE'].astype('float64')\n\nlabel_map = {1: 'Sunday', 2: 'Monday', 3: 'Tuesday', 4: 'Wednesday', 5: 'Thursday', 6: 'Friday', 7: 'Saturday', 9: 'Unknown'}\ncux_df.data['DAY_WEEK_STR'] = cux_df.data.DAY_WEEK.map(label_map)\ngtc_demo_red_blue_palette = [ \"#3182bd\", \"#6baed6\", \"#7b8ed8\", \"#e26798\", \"#ff0068\" , \"#323232\" ]\n\n#declare charts\nchart1 = cuxfilter.charts.scatter(x='dropoff_x', y='dropoff_y', aggregate_col='DAY_WEEK', aggregate_fn='mean',\n color_palette=gtc_demo_red_blue_palette, tile_provider='CartoLight', unselected_alpha=0.2,\n pixel_shade_type='linear')\nchart2 = cuxfilter.charts.multi_select('YEAR')\nchart3 = cuxfilter.charts.bar('DAY_WEEK_STR')\nchart4 = cuxfilter.charts.bar('MONTH')\n\n#declare dashboard\nd = cux_df.dashboard([chart1, chart3, chart4], sidebar=[chart2], layout=cuxfilter.layouts.feature_and_double_base, title='Auto Accident Dataset')\n\n# run the dashboard as a webapp:\n# Bokeh and Datashader based charts also have a `save` tool on the side toolbar, which can download and save the individual chart when interacting with the dashboard.\n# d.show('jupyter-notebook/lab-url')\n\n#run the dashboard within the notebook cell\nd.app()\n\n```\n\n![output dashboard](./docs/_images/demo.gif)\n\n### Example 2\n\n[![Open In Studio Lab](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/rapidsai/cuxfilter/blob/branch-22.02/notebooks/Mortgage_example.ipynb) [<img src=\"https://img.shields.io/badge/-Setup Studio Lab Environment-gray.svg\">](./notebooks/README.md#amazon-sagemaker-studio-lab)\n\n[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/rapidsai/cuxfilter/blob/branch-22.02/notebooks/Mortgage_example.ipynb) [<img src=\"https://img.shields.io/badge/-Setup Colab Environment-gray.svg\">](./notebooks/README.md#google-colab)\n\n```python\nimport cuxfilter\n\n#update data_dir if you have downloaded datasets elsewhere\nDATA_DIR = './data'\nfrom cuxfilter.sampledata import datasets_check\ndatasets_check('mortgage', base_dir=DATA_DIR)\n\ncux_df = cuxfilter.DataFrame.from_arrow(DATA_DIR + '/146M_predictions_v2.arrow')\n\ngeoJSONSource='https://raw.githubusercontent.com/rapidsai/cuxfilter/GTC-2018-mortgage-visualization/javascript/demos/GTC%20demo/src/data/zip3-ms-rhs-lessprops.json'\n\nchart0 = cuxfilter.charts.choropleth( x='zip', color_column='delinquency_12_prediction', color_aggregate_fn='mean',\n elevation_column='current_actual_upb', elevation_factor=0.00001, elevation_aggregate_fn='sum',\n geoJSONSource=geoJSONSource\n)\nchart2 = cuxfilter.charts.bar('delinquency_12_prediction',data_points=50)\nchart3 = cuxfilter.charts.range_slider('borrower_credit_score',data_points=50)\nchart1 = cuxfilter.charts.drop_down('dti')\n\n#declare dashboard\nd = cux_df.dashboard([chart0, chart2],sidebar=[chart3, chart1], layout=cuxfilter.layouts.feature_and_double_base,theme = cuxfilter.themes.dark, title='Mortgage Dashboard')\n\n# run the dashboard within the notebook cell\n# Bokeh and Datashader based charts also have a `save` tool on the side toolbar, which can download and save the individual chart when interacting with the dashboard.\n# d.app()\n\n#run the dashboard as a webapp:\n# if running on a port other than localhost:8888, run d.show(jupyter-notebook-lab-url:port)\nd.show()\n\n```\n\n![output dashboard](./docs/_images/demo2.gif)\n\n## Documentation\n\nFull documentation can be found [on the RAPIDS docs page](https://docs.rapids.ai/api/cuxfilter/stable/).\n\nTroubleshooting help can be found [on our troubleshooting page](https://docs.rapids.ai/api/cuxfilter/stable/installation.html#troubleshooting).\n\n## General Dependencies\n\n- python\n- cudf\n- datashader\n- cupy\n- panel\n- bokeh\n- pyproj\n- geopandas\n- jupyter-server-proxy\n\n## Quick Start\n\nPlease see the [Demo Docker Repository](https://hub.docker.com/r/rapidsai/rapidsai/), choosing a tag based on the NVIDIA CUDA version you\u2019re running. This provides a ready to run Docker container with example notebooks and data, showcasing how you can utilize cuxfilter, cuDF and other RAPIDS libraries.\n\n## Installation\n\n### CUDA/GPU requirements\n\n- CUDA 11.2+\n- Volta architecture or newer (Compute Capability >=7.0)\n\n### Conda\n\ncuxfilter can be installed with conda. You can get a minimal conda installation with [miniforge](https://github.com/conda-forge/miniforge).\n\nFor the nightly version of `cuxfilter`:\n\n```bash\n# for CUDA 12.5\nconda install -c rapidsai-nightly -c conda-forge -c nvidia \\\n cuxfilter=24.12 python=3.12 cuda-version=12.5\n\n# for CUDA 11.8\nconda install -c rapidsai-nightly -c conda-forge -c nvidia \\\n cuxfilter=24.12 python=3.12 cuda-version=11.8\n```\n\nFor the stable version of `cuxfilter`:\n\n```bash\n# for CUDA 12.5\nconda install -c rapidsai -c conda-forge -c nvidia \\\n cuxfilter python=3.12 cuda-version=12.5\n\n# for CUDA 11.8\nconda install -c rapidsai -c conda-forge -c nvidia \\\n cuxfilter python=3.12 cuda-version=11.8\n```\n\nNote: cuxfilter is supported only on Linux, and with Python versions 3.10, 3.11, and 3.12.\n\n> Above are sample install snippets for cuxfilter, see the [Get RAPIDS version picker](https://rapids.ai/start.html) for installing the latest `cuxfilter` version.\n\n### PyPI\n\nInstall cuxfilter from PyPI using pip:\n\n```bash\n# for CUDA 12.0\npip install cuxfilter-cu12 -extra-index-url=https://pypi.nvidia.com\n\n# for CUDA 11.8\npip install cuxfilter-cu11 -extra-index-url=https://pypi.nvidia.com\n```\n\nSee the [Get RAPIDS version picker](https://rapids.ai/start.html) for more OS and version info.\n\n### Build/Install from Source\n\nSee [build instructions](CONTRIBUTING.md#setting-up-your-build-environment).\n\n## Troubleshooting\n\n**bokeh server in jupyter lab**\n\nTo run the bokeh server in a jupyter lab, install jupyterlab dependencies\n\n```bash\nconda install -c conda-forge jupyterlab\njupyter labextension install @pyviz/jupyterlab_pyviz\njupyter labextension install jupyterlab_bokeh\n```\n\n## Download Datasets\n\n1. Auto download datasets\n\nThe notebooks inside `python/notebooks` already have a check function which verifies whether the example dataset is downloaded, and downloads it if it's not.\n\n2. Download manually\n\nWhile in the directory you want the datasets to be saved, execute the following\n\n> Note: Auto Accidents dataset has corrupted coordinate data from the years 2012-2014\n\n```bash\n#go the the environment where cuxfilter is installed. Skip if in a docker container\nsource activate test_env\n\n#download and extract the datasets\ncurl https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2015-01.csv --create-dirs -o ./nyc_taxi.csv\ncurl https://data.rapids.ai/viz-data/146M_predictions_v2.arrow.gz --create-dirs -o ./146M_predictions_v2.arrow.gz\ncurl https://data.rapids.ai/viz-data/auto_accidents.arrow.gz --create-dirs -o ./auto_accidents.arrow.gz\n\npython -c \"from cuxfilter.sampledata import datasets_check; datasets_check(base_dir='./')\"\n```\n\n## Guides and Layout Templates\n\nCurrently supported layout templates and example code can be found on the [layouts page](https://rapidsai.github.io/cuxfilter/layouts/Layouts.html).\n\n### Currently Supported Charts\n\n| Library | Chart type |\n| ------------- | ------------------------------------------------------------------------------------------------ |\n| bokeh | bar |\n| datashader | scatter, scatter_geo, line, stacked_lines, heatmap, graph |\n| panel_widgets | range_slider, date_range_slider, float_slider, int_slider, drop_down, multi_select, card, number |\n| custom | view_dataframe |\n| deckgl | choropleth(3d and 2d) |\n\n## Contributing Developers Guide\n\ncuxfilter acts like a connector library and it is easy to add support for new libraries. The `python/cuxfilter/charts/core` directory has all the core chart classes which can be inherited and used to implement a few (viz related) functions and support dashboarding in cuxfilter directly.\n\nYou can see the examples to implement viz libraries in the bokeh and cudatashader directories. Let us know if you would like to add a chart by opening a feature request issue or submitting a PR.\n\nFor more details, check out the [contributing guide](./CONTRIBUTING.md).\n\n## Future Work\n\ncuxfilter development is in early stages and on going. See what we are planning next on the [projects page](https://github.com/rapidsai/cuxfilter/projects).\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "GPU accelerated cross filtering with cuDF",
"version": "24.12.0",
"project_urls": {
"Documentation": "https://docs.rapids.ai/api/cuxfilter/stable/",
"Homepage": "https://github.com/rapidsai/cuxfilter"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c1100d864d457b9c937f7243c497de87be155542fdcd00618aa7662c6d58aa62",
"md5": "9f9da2e3ae984d113e909fc6c5bb2d69",
"sha256": "d3625facfe22ec61c63e0020feb4f1cc504920f7f9881ad5a6b6a991ce5b295e"
},
"downloads": -1,
"filename": "cuxfilter_cu11-24.12.0.tar.gz",
"has_sig": false,
"md5_digest": "9f9da2e3ae984d113e909fc6c5bb2d69",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 5121,
"upload_time": "2024-12-12T22:24:01",
"upload_time_iso_8601": "2024-12-12T22:24:01.722279Z",
"url": "https://files.pythonhosted.org/packages/c1/10/0d864d457b9c937f7243c497de87be155542fdcd00618aa7662c6d58aa62/cuxfilter_cu11-24.12.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-12 22:24:01",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "rapidsai",
"github_project": "cuxfilter",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "cuxfilter-cu11"
}