cvmcgmlst


Namecvmcgmlst JSON
Version 0.2.4 PyPI version JSON
download
home_pagehttps://github.com/hbucqp/cvmcgmlst
SummarycgMLST analysis tool
upload_time2025-02-26 06:13:07
maintainerNone
docs_urlNone
authorQingpo Cui
requires_pythonNone
licenseMIT Licence
keywords wgs cgmlst
VCS
bugtrack_url
requirements Bio cvmblaster cvmcore pandas setuptools tabulate
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # cvmcgmlst
![PYPI](https://img.shields.io/pypi/v/cvmcgmlst)
![Static Badge](https://img.shields.io/badge/OS-_Windows_%7C_Mac_%7C_Linux-steelblue)

cvmcgmlst is a tool developed based on the [cvmmlst](https://github.com/hbucqp/cvmmlst) for core genome MLST analysis .

```shell
Usage: cvmcgmlst -i <genome assemble directory> -o <output_directory> -db database_name

Author: Qingpo Cui(SZQ Lab, China Agricultural University)

options:
  -h, --help            show this help message and exit
  -i I                  <input_file>: the PATH of assembled genome file
  -db DB                <database_path>: name of cgMLST database
  -o O                  <output_directory>: output PATH
  -minid MINID          <minimum threshold of identity>, default=95
  -mincov MINCOV        <minimum threshold of coverage>, default=90
  -t T                  <number of threads>: default=8
  -v, --version         Display version

cvmcgmlst subcommand:
  {show_db,init,create_db}
    show_db             <show the list of all available database>
    init                <initialize the reference database>
    create_db           <add custome database, use cvmcgmlst createdb -h for help>
```


## Installation
### Using pip
```shell
pip3 install cvmcgmlst
```

## Dependency
- BLAST+ >2.7.0

**you should add BLAST in your PATH**


## Blast installation
### Windows


Following this tutorial:
[Add blast into your windows PATH](http://82.157.185.121:22300/shares/BevQrP0j8EXn76p7CwfheA)

### Linux/Mac
The easyest way to install blast is:

```
conda install -c bioconda blast
```

## Usage

### 1. Create reference cgmlst database

Users could create their own core genome database. All you need is a FASTA file of nucleotide sequences. The sequence IDs should have the format >locus_allelenumber, where **LOCUS** is the loci name, **ALLELENUMBER** is the number of this allele. 
The curated core genome fasta file should like this:

```shell
>GBAA_RS00015_1
TTGGAAAACATCTCTGATTTATGGAACAGCGCCTTAAAAGAACTCGAAAAAAAGGTCAGT
AAACCAAGTTATGAAACATGGTTAAAATCAACAACCGCACATAATTTAAAGAAAGATGTA
AAGTCAGTTGCCTTTCCTCGCCAAATTGCAATGTATTTGTCACGCGAACTGACAGATTCC
TCCTTACCTAAAATAGGTGAAGAATTTGGTGGACGTGATCATACAACCGTTATCCATGCC
CATGAAAAAATTTCTAAGCTACTTAAGACGGATACGCAATTACAAAAACAAGTTGAAGAA
ATTAACGATATTTTAAAGTAG
>GBAA_RS00015_2
TTGGAAAACATCTCTGATTTATGGAACAGCGCCTTAAAAGAACTCGAAAAAAAGGTCAGT
AAACCAAGTTATGAAACATGGTTAAAATCAACAACCGCACATAATTTAAAGAAAGATGTA
TTAACAATTACGGCTCCAAATGAATTCGCCCGTGATTGGTTAGAATCTCATTATTCAGAG
CTAATTTCGGAAACACTTTATGATTTAACGGGGGCAAAATTAGCTATTCGCTTTATTATT
GCTAAAGCATATAATCCCCTCTTTATTTATGGGGGAGTTGGACTTGGAAAAACCCATTTA
>GBAA_RS00015_3
ATGCTTTATATCGCAAATCAAATCGATTCAAATATTCGTGAACTAGAAGGTGCACTCATC
CGCGTTGTAGCTTATTCATCTTTAATTAACAAGGATATTAATGCTGATTTAGCAGCTGAA
AAAGCTGTTGGAGATGTTTATCAAGTAAAATTAGAAGATTTCAAGGCGAAAAAGCGCACA
AAGTCAGTTGCCTTTCCTCGCCAAATTGCAATGTATTTGTCACGCGAACTGACAGATTCC
CATGAAAAAATTTCTAAGCTACTTAAGACGGATACGCAATTACAAAAACAAGTTGAAGAA
ATTAACGATATTTTAAAGTAG
...
```

After finish installation, you should first initialize the reference database using following command
```shell
cvmcgmlst create_db -file YOUR_REF.fasta -name DBNAME
```
### 2. Show available database

You could list all available databases using the show_db subcommand.
```shell
cvmcgmlst show_db
```
The shell will print available databases
|DB_name|No. of seqs|Update_date|
|---|---|---|
|demo|1|2025-02-25|
|DBNAME|Number of locus|Date|


### Run with your genome
```shell
# Single Genome Mode
cvmcgmlst -i /PATH_TO_ASSEBLED_GENOME/sample.fa -db DBNAME -o PATH_TO_OUTPUT
```





            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hbucqp/cvmcgmlst",
    "name": "cvmcgmlst",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "wgs, cgmlst",
    "author": "Qingpo Cui",
    "author_email": "cqp@cau.edu.cn",
    "download_url": "https://files.pythonhosted.org/packages/4b/2e/09f893a1a8b8d9890c17dbef52729e2c34cc0c30eb28b9c2cf8fa54c9016/cvmcgmlst-0.2.4.tar.gz",
    "platform": "any",
    "description": "# cvmcgmlst\n![PYPI](https://img.shields.io/pypi/v/cvmcgmlst)\n![Static Badge](https://img.shields.io/badge/OS-_Windows_%7C_Mac_%7C_Linux-steelblue)\n\ncvmcgmlst is a tool developed based on the [cvmmlst](https://github.com/hbucqp/cvmmlst) for core genome MLST analysis .\n\n```shell\nUsage: cvmcgmlst -i <genome assemble directory> -o <output_directory> -db database_name\n\nAuthor: Qingpo Cui(SZQ Lab, China Agricultural University)\n\noptions:\n  -h, --help            show this help message and exit\n  -i I                  <input_file>: the PATH of assembled genome file\n  -db DB                <database_path>: name of cgMLST database\n  -o O                  <output_directory>: output PATH\n  -minid MINID          <minimum threshold of identity>, default=95\n  -mincov MINCOV        <minimum threshold of coverage>, default=90\n  -t T                  <number of threads>: default=8\n  -v, --version         Display version\n\ncvmcgmlst subcommand:\n  {show_db,init,create_db}\n    show_db             <show the list of all available database>\n    init                <initialize the reference database>\n    create_db           <add custome database, use cvmcgmlst createdb -h for help>\n```\n\n\n## Installation\n### Using pip\n```shell\npip3 install cvmcgmlst\n```\n\n## Dependency\n- BLAST+ >2.7.0\n\n**you should add BLAST in your PATH**\n\n\n## Blast installation\n### Windows\n\n\nFollowing this tutorial:\n[Add blast into your windows PATH](http://82.157.185.121:22300/shares/BevQrP0j8EXn76p7CwfheA)\n\n### Linux/Mac\nThe easyest way to install blast is:\n\n```\nconda install -c bioconda blast\n```\n\n## Usage\n\n### 1. Create reference cgmlst database\n\nUsers could create their own core genome database. All you need is a FASTA file of nucleotide sequences. The sequence IDs should have the format >locus_allelenumber, where **LOCUS** is the loci name, **ALLELENUMBER** is the number of this allele. \nThe curated core genome fasta file should like this:\n\n```shell\n>GBAA_RS00015_1\nTTGGAAAACATCTCTGATTTATGGAACAGCGCCTTAAAAGAACTCGAAAAAAAGGTCAGT\nAAACCAAGTTATGAAACATGGTTAAAATCAACAACCGCACATAATTTAAAGAAAGATGTA\nAAGTCAGTTGCCTTTCCTCGCCAAATTGCAATGTATTTGTCACGCGAACTGACAGATTCC\nTCCTTACCTAAAATAGGTGAAGAATTTGGTGGACGTGATCATACAACCGTTATCCATGCC\nCATGAAAAAATTTCTAAGCTACTTAAGACGGATACGCAATTACAAAAACAAGTTGAAGAA\nATTAACGATATTTTAAAGTAG\n>GBAA_RS00015_2\nTTGGAAAACATCTCTGATTTATGGAACAGCGCCTTAAAAGAACTCGAAAAAAAGGTCAGT\nAAACCAAGTTATGAAACATGGTTAAAATCAACAACCGCACATAATTTAAAGAAAGATGTA\nTTAACAATTACGGCTCCAAATGAATTCGCCCGTGATTGGTTAGAATCTCATTATTCAGAG\nCTAATTTCGGAAACACTTTATGATTTAACGGGGGCAAAATTAGCTATTCGCTTTATTATT\nGCTAAAGCATATAATCCCCTCTTTATTTATGGGGGAGTTGGACTTGGAAAAACCCATTTA\n>GBAA_RS00015_3\nATGCTTTATATCGCAAATCAAATCGATTCAAATATTCGTGAACTAGAAGGTGCACTCATC\nCGCGTTGTAGCTTATTCATCTTTAATTAACAAGGATATTAATGCTGATTTAGCAGCTGAA\nAAAGCTGTTGGAGATGTTTATCAAGTAAAATTAGAAGATTTCAAGGCGAAAAAGCGCACA\nAAGTCAGTTGCCTTTCCTCGCCAAATTGCAATGTATTTGTCACGCGAACTGACAGATTCC\nCATGAAAAAATTTCTAAGCTACTTAAGACGGATACGCAATTACAAAAACAAGTTGAAGAA\nATTAACGATATTTTAAAGTAG\n...\n```\n\nAfter finish installation, you should first initialize the reference database using following command\n```shell\ncvmcgmlst create_db -file YOUR_REF.fasta -name DBNAME\n```\n### 2. Show available database\n\nYou could list all available databases using the show_db subcommand.\n```shell\ncvmcgmlst show_db\n```\nThe shell will print available databases\n|DB_name|No. of seqs|Update_date|\n|---|---|---|\n|demo|1|2025-02-25|\n|DBNAME|Number of locus|Date|\n\n\n### Run with your genome\n```shell\n# Single Genome Mode\ncvmcgmlst -i /PATH_TO_ASSEBLED_GENOME/sample.fa -db DBNAME -o PATH_TO_OUTPUT\n```\n\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT Licence",
    "summary": "cgMLST analysis tool",
    "version": "0.2.4",
    "project_urls": {
        "Homepage": "https://github.com/hbucqp/cvmcgmlst"
    },
    "split_keywords": [
        "wgs",
        " cgmlst"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4c017454c85984e9f7204fa1e2aec54d8246f4db06b9be55ae1489b1059ce8fb",
                "md5": "112e785bfc09152ac493c9de6cabe7e4",
                "sha256": "d33adf295b5c41016e6a74d8625679112e3c96ea24aad2810340338f5d1d9376"
            },
            "downloads": -1,
            "filename": "cvmcgmlst-0.2.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "112e785bfc09152ac493c9de6cabe7e4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 8110,
            "upload_time": "2025-02-26T06:13:05",
            "upload_time_iso_8601": "2025-02-26T06:13:05.990860Z",
            "url": "https://files.pythonhosted.org/packages/4c/01/7454c85984e9f7204fa1e2aec54d8246f4db06b9be55ae1489b1059ce8fb/cvmcgmlst-0.2.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4b2e09f893a1a8b8d9890c17dbef52729e2c34cc0c30eb28b9c2cf8fa54c9016",
                "md5": "feb9e2dd1344c5ca6d9c21edd47f2d18",
                "sha256": "65b04717a1ad2ec738cde422c25e60433a5f29ce1715eccd7f3eb983b3526187"
            },
            "downloads": -1,
            "filename": "cvmcgmlst-0.2.4.tar.gz",
            "has_sig": false,
            "md5_digest": "feb9e2dd1344c5ca6d9c21edd47f2d18",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 6648,
            "upload_time": "2025-02-26T06:13:07",
            "upload_time_iso_8601": "2025-02-26T06:13:07.803029Z",
            "url": "https://files.pythonhosted.org/packages/4b/2e/09f893a1a8b8d9890c17dbef52729e2c34cc0c30eb28b9c2cf8fa54c9016/cvmcgmlst-0.2.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-26 06:13:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hbucqp",
    "github_project": "cvmcgmlst",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "Bio",
            "specs": [
                [
                    "==",
                    "1.7.1"
                ]
            ]
        },
        {
            "name": "cvmblaster",
            "specs": [
                [
                    "==",
                    "0.4.4"
                ]
            ]
        },
        {
            "name": "cvmcore",
            "specs": [
                [
                    "==",
                    "0.1.9"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "1.4.0"
                ]
            ]
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    "==",
                    "58.1.0"
                ]
            ]
        },
        {
            "name": "tabulate",
            "specs": [
                [
                    "==",
                    "0.9.0"
                ]
            ]
        }
    ],
    "lcname": "cvmcgmlst"
}
        
Elapsed time: 0.40384s