# cvmmlst
cvmcgmlst is a tool developed based on the [cvmmlst](https://github.com/hbucqp/cvmmlst) for core genome MLST analysis .
```
usage: cvmcgmlst -i <genome assemble directory> -o <output_directory>
Author: Qingpo Cui(SZQ Lab, China Agricultural University)
optional arguments:
-h, --help show this help message and exit
-i I <input_path>: the PATH to the directory of assembled genome files. Could not use with -f
-f F <input_file>: the PATH of assembled genome file. Could not use with -i
-db DB <database_path>: path of cgMLST database
-o O <output_directory>: output PATH
-minid MINID <minimum threshold of identity>, default=95
-mincov MINCOV <minimum threshold of coverage>, default=90
-create_db <initialize the reference database>
-t T <number of threads>: default=8
-v, --version Display version
```
## Installation
### Using pip
pip3 install cvmcgmlst
### Using conda
comming soon...
## Dependency
- BLAST+ >2.7.0
**you should add BLAST in your PATH**
## Blast installation
### Windows
Following this tutorial:
[Add blast into your windows PATH](http://82.157.185.121:22300/shares/BevQrP0j8EXn76p7CwfheA)
### Linux/Mac
The easyest way to install blast is:
```
conda install -c bioconda blast
```
## Usage
### Making your own database
Users could create their own core genome database. All you need is a FASTA file of nucleotide sequences. The sequence IDs should have the format >locus_allelenumber, where **locus** is the loci name, **allelenumber** is the number of this allele.
The curated core genome fasta file should like this:
```
>GBAA_RS00015_1
TTGGAAAACATCTCTGATTTATGGAACAGCGCCTTAAAAGAACTCGAAAAAAAGGTCAGT
AAACCAAGTTATGAAACATGGTTAAAATCAACAACCGCACATAATTTAAAGAAAGATGTA
TTAACAATTACGGCTCCAAATGAATTCGCCCGTGATTGGTTAGAATCTCATTATTCAGAG
CTAATTTCGGAAACACTTTATGATTTAACGGGGGCAAAATTAGCTATTCGCTTTATTATT
CCCCAAAGTCAAGCTGAAGAGGAGATTGATCTTCCTCCTGCTAAACCAAATGCAGCACAA
GATGATTCTAATCATTTACCACAGAGTATGCTAAACCCAAAATATACGTTTGATACATTT
GTTATTGGCTCTGGTAACCGTTTTGCTCACGCTGCTTCATTGGCCGTAGCCGAAGCGCCA
GCTAAAGCATATAATCCCCTCTTTATTTATGGGGGAGTTGGACTTGGAAAAACCCATTTA
ATGCATGCAATTGGCCATTATGTAATTGAACATAACCCAAATGCCAAAGTTGTATATTTA
TCATCAGAAAAATTTACAAATGAATTCATTAATTCTATTCGTGATAATAAAGCGGTCGAT
TTTCGTAATAAATACCGCAATGTAGATGTTTTATTGATAGATGATATTCAATTTTTAGCG
GGAAAAGAACAAACTCAAGAAGAGTTTTTCCATACATTCAATGCATTACACGAAGAAAGT
AAACAAATTGTAATTTCCAGTGATCGGCCACCAAAAGAAATTCCAACTTTAGAAGATCGT
CTTCGTTCTCGCTTTGAATGGGGACTCATTACGGATATTACGCCACCAGATTTAGAAACA
CGAATTGCGATTTTACGTAAAAAGGCAAAGGCTGAAGGACTTGATATACCAAATGAGGTC
ATGCTTTATATCGCAAATCAAATCGATTCAAATATTCGTGAACTAGAAGGTGCACTCATC
CGCGTTGTAGCTTATTCATCTTTAATTAACAAGGATATTAATGCTGATTTAGCAGCTGAA
GCACTTAAAGATATTATTCCAAATTCTAAACCAAAAATTATCTCCATTTATGATATTCAA
AAAGCTGTTGGAGATGTTTATCAAGTAAAATTAGAAGATTTCAAGGCGAAAAAGCGCACA
AAGTCAGTTGCCTTTCCTCGCCAAATTGCAATGTATTTGTCACGCGAACTGACAGATTCC
TCCTTACCTAAAATAGGTGAAGAATTTGGTGGACGTGATCATACAACCGTTATCCATGCC
CATGAAAAAATTTCTAAGCTACTTAAGACGGATACGCAATTACAAAAACAAGTTGAAGAA
ATTAACGATATTTTAAAGTAG
```
The first time when running cvmcgmlst, you should use -create_db parameter to initialize your database. **After your own database was created, you could run cvmcgmlst without using -create_db parameter**.
You could also create reference database using makeblastdb command.
```
makeblastdb -hash_index -in reference.fa -dbtype nucl -title cgMLST -parse_seqids
```
### Example
```
# Single Genome Mode
cvmcgmlst -f /PATH_TO_ASSEBLED_GENOME/sample.fa -create_db -db /PATH_TO_DATABASE/reference.fa -o PATH_TO_OUTPUT
# Batch Mode
cvmcgmlst -i /PATH_TO_ASSEBLED_GENOME_DIR -create_db -db /PATH_TO_DATABASE/reference.fa -o PATH_TO_OUTPUT
```
Raw data
{
"_id": null,
"home_page": "https://github.com/hbucqp/cvmcgmlst",
"name": "cvmcgmlst",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "wgs,cgmlst",
"author": "Qingpo Cui",
"author_email": "cqp@cau.edu.cn",
"download_url": "https://files.pythonhosted.org/packages/44/c1/f3e2cb5b6acd8a951c74390a7de94f9ebf2419ab66de2b845d26dfffe654/cvmcgmlst-0.1.7.tar.gz",
"platform": "any",
"description": "# cvmmlst\n\n\ncvmcgmlst is a tool developed based on the [cvmmlst](https://github.com/hbucqp/cvmmlst) for core genome MLST analysis .\n\n```\nusage: cvmcgmlst -i <genome assemble directory> -o <output_directory>\n\nAuthor: Qingpo Cui(SZQ Lab, China Agricultural University)\n\noptional arguments:\n -h, --help show this help message and exit\n -i I <input_path>: the PATH to the directory of assembled genome files. Could not use with -f\n -f F <input_file>: the PATH of assembled genome file. Could not use with -i\n -db DB <database_path>: path of cgMLST database\n -o O <output_directory>: output PATH\n -minid MINID <minimum threshold of identity>, default=95\n -mincov MINCOV <minimum threshold of coverage>, default=90\n -create_db <initialize the reference database>\n -t T <number of threads>: default=8\n -v, --version Display version\n```\n\n\n## Installation\n### Using pip\npip3 install cvmcgmlst\n\n### Using conda\ncomming soon...\n\n## Dependency\n- BLAST+ >2.7.0\n\n**you should add BLAST in your PATH**\n\n\n## Blast installation\n### Windows\n\n\nFollowing this tutorial:\n[Add blast into your windows PATH](http://82.157.185.121:22300/shares/BevQrP0j8EXn76p7CwfheA)\n\n### Linux/Mac\nThe easyest way to install blast is:\n\n```\nconda install -c bioconda blast\n```\n\n\n\n## Usage\n\n\n### Making your own database\n\nUsers could create their own core genome database. All you need is a FASTA file of nucleotide sequences. The sequence IDs should have the format >locus_allelenumber, where **locus** is the loci name, **allelenumber** is the number of this allele. \nThe curated core genome fasta file should like this:\n```\n>GBAA_RS00015_1\nTTGGAAAACATCTCTGATTTATGGAACAGCGCCTTAAAAGAACTCGAAAAAAAGGTCAGT\nAAACCAAGTTATGAAACATGGTTAAAATCAACAACCGCACATAATTTAAAGAAAGATGTA\nTTAACAATTACGGCTCCAAATGAATTCGCCCGTGATTGGTTAGAATCTCATTATTCAGAG\nCTAATTTCGGAAACACTTTATGATTTAACGGGGGCAAAATTAGCTATTCGCTTTATTATT\nCCCCAAAGTCAAGCTGAAGAGGAGATTGATCTTCCTCCTGCTAAACCAAATGCAGCACAA\nGATGATTCTAATCATTTACCACAGAGTATGCTAAACCCAAAATATACGTTTGATACATTT\nGTTATTGGCTCTGGTAACCGTTTTGCTCACGCTGCTTCATTGGCCGTAGCCGAAGCGCCA\nGCTAAAGCATATAATCCCCTCTTTATTTATGGGGGAGTTGGACTTGGAAAAACCCATTTA\nATGCATGCAATTGGCCATTATGTAATTGAACATAACCCAAATGCCAAAGTTGTATATTTA\nTCATCAGAAAAATTTACAAATGAATTCATTAATTCTATTCGTGATAATAAAGCGGTCGAT\nTTTCGTAATAAATACCGCAATGTAGATGTTTTATTGATAGATGATATTCAATTTTTAGCG\nGGAAAAGAACAAACTCAAGAAGAGTTTTTCCATACATTCAATGCATTACACGAAGAAAGT\nAAACAAATTGTAATTTCCAGTGATCGGCCACCAAAAGAAATTCCAACTTTAGAAGATCGT\nCTTCGTTCTCGCTTTGAATGGGGACTCATTACGGATATTACGCCACCAGATTTAGAAACA\nCGAATTGCGATTTTACGTAAAAAGGCAAAGGCTGAAGGACTTGATATACCAAATGAGGTC\nATGCTTTATATCGCAAATCAAATCGATTCAAATATTCGTGAACTAGAAGGTGCACTCATC\nCGCGTTGTAGCTTATTCATCTTTAATTAACAAGGATATTAATGCTGATTTAGCAGCTGAA\nGCACTTAAAGATATTATTCCAAATTCTAAACCAAAAATTATCTCCATTTATGATATTCAA\nAAAGCTGTTGGAGATGTTTATCAAGTAAAATTAGAAGATTTCAAGGCGAAAAAGCGCACA\nAAGTCAGTTGCCTTTCCTCGCCAAATTGCAATGTATTTGTCACGCGAACTGACAGATTCC\nTCCTTACCTAAAATAGGTGAAGAATTTGGTGGACGTGATCATACAACCGTTATCCATGCC\nCATGAAAAAATTTCTAAGCTACTTAAGACGGATACGCAATTACAAAAACAAGTTGAAGAA\nATTAACGATATTTTAAAGTAG\n```\n\nThe first time when running cvmcgmlst, you should use -create_db parameter to initialize your database. **After your own database was created, you could run cvmcgmlst without using -create_db parameter**.\n\nYou could also create reference database using makeblastdb command.\n\n```\nmakeblastdb -hash_index -in reference.fa -dbtype nucl -title cgMLST -parse_seqids\n``` \n\n### Example\n```\n# Single Genome Mode\ncvmcgmlst -f /PATH_TO_ASSEBLED_GENOME/sample.fa -create_db -db /PATH_TO_DATABASE/reference.fa -o PATH_TO_OUTPUT\n\n# Batch Mode\ncvmcgmlst -i /PATH_TO_ASSEBLED_GENOME_DIR -create_db -db /PATH_TO_DATABASE/reference.fa -o PATH_TO_OUTPUT\n```\n\n\n\n\n\n\n\n",
"bugtrack_url": null,
"license": "MIT Licence",
"summary": "cgMLST analysis tool",
"version": "0.1.7",
"split_keywords": [
"wgs",
"cgmlst"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1746862ebe44cde8373f4e04041ff89ce8bdaf3827bd4adfa75e2b6d3abfe054",
"md5": "3525993a2341755c760e7c080b2ed5d6",
"sha256": "5839a77a45ae55a00a87d6278070cea0fdc5f34776d2819c19a119fc3f37be32"
},
"downloads": -1,
"filename": "cvmcgmlst-0.1.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3525993a2341755c760e7c080b2ed5d6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 9947,
"upload_time": "2023-03-22T04:18:50",
"upload_time_iso_8601": "2023-03-22T04:18:50.127848Z",
"url": "https://files.pythonhosted.org/packages/17/46/862ebe44cde8373f4e04041ff89ce8bdaf3827bd4adfa75e2b6d3abfe054/cvmcgmlst-0.1.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "44c1f3e2cb5b6acd8a951c74390a7de94f9ebf2419ab66de2b845d26dfffe654",
"md5": "6750922e269bf6db70c99e1d24abb99e",
"sha256": "48d3cf02cd4d236c5bff0f26768ea518cbd3124e7ae2adb64dd70e0bbbc71f65"
},
"downloads": -1,
"filename": "cvmcgmlst-0.1.7.tar.gz",
"has_sig": false,
"md5_digest": "6750922e269bf6db70c99e1d24abb99e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 33694,
"upload_time": "2023-03-22T04:18:53",
"upload_time_iso_8601": "2023-03-22T04:18:53.370658Z",
"url": "https://files.pythonhosted.org/packages/44/c1/f3e2cb5b6acd8a951c74390a7de94f9ebf2419ab66de2b845d26dfffe654/cvmcgmlst-0.1.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-22 04:18:53",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "hbucqp",
"github_project": "cvmcgmlst",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "cvmcgmlst"
}