CWordTM Package (cwordtm 0.7.3)
===============================
A Topic Modeling Toolkit from Low-code to Pro-code
Installation
------------
.. code:: shell
$ pip install cwordtm
Usage
-----
``cwordtm`` can be used to perform some NLP pre-processing tasks, text
exploration, including Chinese one, text visualization (word cloud), and
topic modeling (BERTopic, LDA and NMF) as follows:
.. code:: python
from cwordtm import meta, util, ta, tm, viz, pivot, quot
version Submodule
~~~~~~~~~~~~~~~~~
Provides some version information.
.. code:: python
import cwordtm
print(cwordtm.__version__)
meta Submodule
~~~~~~~~~~~~~~
Provides extracting source code of ``cwordtm`` module and adding timing and code-showing features
to all functions of the module.
.. code:: python
print(meta.get_module_info())
print(meta.get_submodule_info('viz', detailed=True))
quot Submodule
~~~~~~~~~~~~~~
Provides functions to extract the quotation source Scripture in OT based on the presribed NT Scripture.
.. code:: python
cdf = util.load_word('cuv.csv')
crom8 = util.extract2(cdf, 'Rom 8')
quot.show_quot(crom8, lang='chi')
pivot Submodule
~~~~~~~~~~~~~~~
Provides a pivot table of the prescribed text.
.. code:: python
cdf = util.load_word('cuv.csv')
pivot.stat(cdf, chi=True)
ta Submodule
~~~~~~~~~~~~
Provides text analytics functions, including extracting the summarization of the prescribed text.
.. code:: python
cdf = util.load_word('cuv.csv')
crom8 = util.extract2(cdf, 'Rom 8')
ta.summary_chi(crom8)
tm Submodule
~~~~~~~~~~~~~
Provides text modeling functions, including LDA, NMF and BERTopics modeling.
.. code:: python
lda = tm.lda_process("web.csv", eval=True, timing=True)
nmf = tm.nmf_process("web.csv", eval=True, code=1)
btm = tm.btm_process("cuv.csv", chi=True, cat='ot', eval=True)
btm = tm.btm_process("cuv.csv", chi=True, cat='nt', eval=True, code=2)
util Submodule
~~~~~~~~~~~~~~
Provides loading text and text preprocessing functions.
.. code:: python
df = util.load_word()
cdf = util.load_word('cuv.csv')
df.head()
cdf.head()
rom8 = util.extract2(df, 'Rom 8')
crom8 = util.extract2(cdf, 'Rom 8')
viz Submodule
~~~~~~~~~~~~~
Wordcloud plotting from the prescribed text.
.. code:: python
cdf = util.load_word('cuv.csv')
viz.chi_wordcloud(cdf)
Demo
----
Usage demo file with output:
#. On BBC News: `CWordTM_BBC.pdf <https://github.com/drjohnnycheng/CWordTM/blob/main/Demo/CWordTM_BBC.pdf>`_
#. On Chinese Bible (CUV): `CWordTM_CUV.pdf <https://github.com/drjohnnycheng/CWordTM/blob/main/Demo/CWordTM_CUV.pdf>`_
Paper
-----
For a more detailed overview, you can read the demo paper: https://link.springer.com/chapter/10.1007/978-3-031-70242-6_4
Documentation
-------------
``cwordtm`` documentation can be reached from: https://cwordtm.readthedocs.io
Contributing
------------
Interested in contributing? Check out the contributing guidelines.
Please note that this project is released with a Code of Conduct. By
contributing to this project, you agree to abide by its terms.
License
-------
``cwordtm`` was created by Dr. Johnny Cheng. It is licensed under the terms
of the MIT license.
Credits
-------
``cwordtm`` was created under the guidance of Jehovah, the Almighty God.
Raw data
{
"_id": null,
"home_page": null,
"name": "cwordtm",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "topic modeling, BERTopic, LDA, NMF, NLP, Holy Bible, Chinese text preprocessing, pre-packaging, low-code, pro-code, meta programming, CWordTM",
"author": "Dr. Johnny CHENG",
"author_email": "<drjohnnycheng@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/53/df/0dece726fa8c55b4c33a4d372169b002f3d8ab437bd9dea14efc334c780b/cwordtm-0.7.3.tar.gz",
"platform": null,
"description": "CWordTM Package (cwordtm 0.7.3)\r\n===============================\r\n\r\nA Topic Modeling Toolkit from Low-code to Pro-code\r\n\r\nInstallation\r\n------------\r\n\r\n.. code:: shell\r\n\r\n $ pip install cwordtm\r\n\r\nUsage\r\n-----\r\n\r\n``cwordtm`` can be used to perform some NLP pre-processing tasks, text\r\nexploration, including Chinese one, text visualization (word cloud), and\r\ntopic modeling (BERTopic, LDA and NMF) as follows:\r\n\r\n.. code:: python\r\n\r\n from cwordtm import meta, util, ta, tm, viz, pivot, quot\r\n\r\nversion Submodule\r\n~~~~~~~~~~~~~~~~~\r\n\r\nProvides some version information.\r\n\r\n.. code:: python\r\n\r\n import cwordtm\r\n print(cwordtm.__version__)\r\n\r\nmeta Submodule\r\n~~~~~~~~~~~~~~\r\n\r\nProvides extracting source code of ``cwordtm`` module and adding timing and code-showing features\r\nto all functions of the module.\r\n\r\n.. code:: python\r\n\r\n print(meta.get_module_info())\r\n\r\n print(meta.get_submodule_info('viz', detailed=True))\r\n\r\n\r\nquot Submodule\r\n~~~~~~~~~~~~~~\r\n\r\nProvides functions to extract the quotation source Scripture in OT based on the presribed NT Scripture.\r\n\r\n.. code:: python\r\n\r\n cdf = util.load_word('cuv.csv')\r\n crom8 = util.extract2(cdf, 'Rom 8')\r\n \r\n quot.show_quot(crom8, lang='chi')\r\n\r\npivot Submodule\r\n~~~~~~~~~~~~~~~\r\n\r\nProvides a pivot table of the prescribed text.\r\n\r\n.. code:: python\r\n\r\n cdf = util.load_word('cuv.csv')\r\n\r\n pivot.stat(cdf, chi=True)\r\n\r\nta Submodule\r\n~~~~~~~~~~~~\r\n\r\nProvides text analytics functions, including extracting the summarization of the prescribed text.\r\n\r\n.. code:: python\r\n\r\n cdf = util.load_word('cuv.csv')\r\n crom8 = util.extract2(cdf, 'Rom 8')\r\n\r\n ta.summary_chi(crom8)\r\n\r\ntm Submodule\r\n~~~~~~~~~~~~~\r\n\r\nProvides text modeling functions, including LDA, NMF and BERTopics modeling.\r\n\r\n.. code:: python\r\n\r\n lda = tm.lda_process(\"web.csv\", eval=True, timing=True)\r\n\r\n nmf = tm.nmf_process(\"web.csv\", eval=True, code=1)\r\n\r\n btm = tm.btm_process(\"cuv.csv\", chi=True, cat='ot', eval=True)\r\n\r\n btm = tm.btm_process(\"cuv.csv\", chi=True, cat='nt', eval=True, code=2)\r\n\r\nutil Submodule\r\n~~~~~~~~~~~~~~\r\n\r\nProvides loading text and text preprocessing functions.\r\n\r\n.. code:: python\r\n\r\n df = util.load_word()\r\n cdf = util.load_word('cuv.csv')\r\n\r\n df.head()\r\n cdf.head()\r\n\r\n rom8 = util.extract2(df, 'Rom 8')\r\n crom8 = util.extract2(cdf, 'Rom 8')\r\n\r\nviz Submodule\r\n~~~~~~~~~~~~~\r\n\r\nWordcloud plotting from the prescribed text.\r\n\r\n.. code:: python\r\n\r\n cdf = util.load_word('cuv.csv')\r\n\r\n viz.chi_wordcloud(cdf)\r\n\r\nDemo\r\n----\r\n\r\nUsage demo file with output:\r\n\r\n#. On BBC News: `CWordTM_BBC.pdf <https://github.com/drjohnnycheng/CWordTM/blob/main/Demo/CWordTM_BBC.pdf>`_\r\n\r\n#. On Chinese Bible (CUV): `CWordTM_CUV.pdf <https://github.com/drjohnnycheng/CWordTM/blob/main/Demo/CWordTM_CUV.pdf>`_\r\n\r\nPaper\r\n-----\r\n\r\nFor a more detailed overview, you can read the demo paper: https://link.springer.com/chapter/10.1007/978-3-031-70242-6_4\r\n\r\nDocumentation\r\n-------------\r\n\r\n``cwordtm`` documentation can be reached from: https://cwordtm.readthedocs.io\r\n\r\nContributing\r\n------------\r\n\r\nInterested in contributing? Check out the contributing guidelines.\r\nPlease note that this project is released with a Code of Conduct. By\r\ncontributing to this project, you agree to abide by its terms.\r\n\r\nLicense\r\n-------\r\n\r\n``cwordtm`` was created by Dr. Johnny Cheng. It is licensed under the terms\r\nof the MIT license.\r\n\r\nCredits\r\n-------\r\n\r\n``cwordtm`` was created under the guidance of Jehovah, the Almighty God.\r\n",
"bugtrack_url": null,
"license": null,
"summary": "CWordTM: Towards a Topic Modeling Toolkit from Low-Code to Pro-Code",
"version": "0.7.3",
"project_urls": {
"Documentation": "https://cwordtm.readthedocs.io",
"GitHub Repository": "https://github.com/drjohnnycheng/cwordtm"
},
"split_keywords": [
"topic modeling",
" bertopic",
" lda",
" nmf",
" nlp",
" holy bible",
" chinese text preprocessing",
" pre-packaging",
" low-code",
" pro-code",
" meta programming",
" cwordtm"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "77d63790c2e3d5776b0c893b5a1a91e20ce2a6eb86f5dff74cc4f0f381a4f9f3",
"md5": "232d3dbcddac0f9624edd8ed4f7c230c",
"sha256": "828d1e5e261cc7a6d06c2edf9b69c102aac91071ad25c254535065eb2fb28c13"
},
"downloads": -1,
"filename": "cwordtm-0.7.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "232d3dbcddac0f9624edd8ed4f7c230c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 18291722,
"upload_time": "2025-01-20T04:49:46",
"upload_time_iso_8601": "2025-01-20T04:49:46.228293Z",
"url": "https://files.pythonhosted.org/packages/77/d6/3790c2e3d5776b0c893b5a1a91e20ce2a6eb86f5dff74cc4f0f381a4f9f3/cwordtm-0.7.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "53df0dece726fa8c55b4c33a4d372169b002f3d8ab437bd9dea14efc334c780b",
"md5": "50adac431463d3405e823827f37dc73a",
"sha256": "6af21d7fde685fd178da4a4051a1cbf2f90680782f03f269b5aee4e3b06259f4"
},
"downloads": -1,
"filename": "cwordtm-0.7.3.tar.gz",
"has_sig": false,
"md5_digest": "50adac431463d3405e823827f37dc73a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 18235318,
"upload_time": "2025-01-20T04:49:51",
"upload_time_iso_8601": "2025-01-20T04:49:51.738174Z",
"url": "https://files.pythonhosted.org/packages/53/df/0dece726fa8c55b4c33a4d372169b002f3d8ab437bd9dea14efc334c780b/cwordtm-0.7.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-20 04:49:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "drjohnnycheng",
"github_project": "cwordtm",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "cwordtm"
}