cwordtm


Namecwordtm JSON
Version 0.7.1 PyPI version JSON
download
home_pageNone
SummaryCWordTM: Towards a Topic Modeling Toolkit from Low-Code to Pro-Code
upload_time2024-11-21 10:23:00
maintainerNone
docs_urlNone
authorDr. Johnny CHENG
requires_pythonNone
licenseNone
keywords topic modeling bertopic lda nmf nlp holy bible chinese text preprocessing pre-packaging low-code pro-code meta programming cwordtm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            CWordTM Package (cwordtm 0.7.1)
===============================

A Topic Modeling Toolkit from Low-code to Pro-code

Installation
------------

.. code:: shell

   $ pip install cwordtm

Usage
-----

``cwordtm`` can be used to perform some NLP pre-processing tasks, text
exploration, including Chinese one, text visualization (word cloud), and
topic modeling (BERTopic, LDA and NMF) as follows:

.. code:: python

   from cwordtm import meta, util, ta, tm, viz, pivot, quot

version Submodule
~~~~~~~~~~~~~~~~~

Provides some version information.

.. code:: python

   import cwordtm
   print(cwordtm.__version__)

meta Submodule
~~~~~~~~~~~~~~

Provides extracting source code of ``cwordtm`` module and adding timing and code-showing features
to all functions of the module.

.. code:: python

   print(meta.get_module_info())

   print(meta.get_submodule_info('viz', detailed=True))


quot Submodule
~~~~~~~~~~~~~~

Provides functions to extract the quotation source Scripture in OT based on the presribed NT Scripture.

.. code:: python

   cdf = util.load_word('cuv.csv')
   crom8 = util.extract2(cdf, 'Rom 8')
   
   quot.show_quot(crom8, lang='chi')

pivot Submodule
~~~~~~~~~~~~~~~

Provides a pivot table of the prescribed text.

.. code:: python

   cdf = util.load_word('cuv.csv')

   pivot.stat(cdf, chi=True)

ta Submodule
~~~~~~~~~~~~

Provides text analytics functions, including extracting the summarization of the prescribed text.

.. code:: python

   cdf = util.load_word('cuv.csv')
   crom8 = util.extract2(cdf, 'Rom 8')

   ta.summary_chi(crom8)

tm Submodule
~~~~~~~~~~~~~

Provides text modeling functions, including LDA, NMF and BERTopics modeling.

.. code:: python

   lda = tm.lda_process("web.csv", eval=True, timing=True)

   nmf = tm.nmf_process("web.csv", eval=True, code=1)

   btm = tm.btm_process("cuv.csv", chi=True, cat='ot', eval=True)

   btm = tm.btm_process("cuv.csv", chi=True, cat='nt', eval=True, code=2)

util Submodule
~~~~~~~~~~~~~~

Provides loading text and text preprocessing functions.

.. code:: python

   df = util.load_word()
   cdf = util.load_word('cuv.csv')

   df.head()
   cdf.head()

   rom8 = util.extract2(df, 'Rom 8')
   crom8 = util.extract2(cdf, 'Rom 8')

viz Submodule
~~~~~~~~~~~~~

Wordcloud plotting from the prescribed text.

.. code:: python

   cdf = util.load_word('cuv.csv')

   viz.chi_wordcloud(cdf)

Demo
----

Usage demo file with output:

#. On BBC News: `CWordTM_BBC.pdf <https://github.com/drjohnnycheng/CWordTM/blob/main/Demo/CWordTM_BBC.pdf>`_

#. On Chinese Bible (CUV): `CWordTM_CUV.pdf <https://github.com/drjohnnycheng/CWordTM/blob/main/Demo/CWordTM_CUV.pdf>`_

Paper
-----

For a more detailed overview, you can read the demo paper: https://link.springer.com/chapter/10.1007/978-3-031-70242-6_4

Documentation
-------------

``cwordtm`` documentation can be reached from: https://cwordtm.readthedocs.io

Contributing
------------

Interested in contributing? Check out the contributing guidelines.
Please note that this project is released with a Code of Conduct. By
contributing to this project, you agree to abide by its terms.

License
-------

``cwordtm`` was created by Dr. Johnny Cheng. It is licensed under the terms
of the MIT license.

Credits
-------

``cwordtm`` was created under the guidance of Jehovah, the Almighty God.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "cwordtm",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "topic modeling, BERTopic, LDA, NMF, NLP, Holy Bible, Chinese text preprocessing, pre-packaging, low-code, pro-code, meta programming, CWordTM",
    "author": "Dr. Johnny CHENG",
    "author_email": "<drjohnnycheng@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/fc/d0/2026c8d38d5e3f26aa9f5f5739fa14d6344af4a4a5a16bde9dd1bebfe918/cwordtm-0.7.1.tar.gz",
    "platform": null,
    "description": "CWordTM Package (cwordtm 0.7.1)\r\n===============================\r\n\r\nA Topic Modeling Toolkit from Low-code to Pro-code\r\n\r\nInstallation\r\n------------\r\n\r\n.. code:: shell\r\n\r\n   $ pip install cwordtm\r\n\r\nUsage\r\n-----\r\n\r\n``cwordtm`` can be used to perform some NLP pre-processing tasks, text\r\nexploration, including Chinese one, text visualization (word cloud), and\r\ntopic modeling (BERTopic, LDA and NMF) as follows:\r\n\r\n.. code:: python\r\n\r\n   from cwordtm import meta, util, ta, tm, viz, pivot, quot\r\n\r\nversion Submodule\r\n~~~~~~~~~~~~~~~~~\r\n\r\nProvides some version information.\r\n\r\n.. code:: python\r\n\r\n   import cwordtm\r\n   print(cwordtm.__version__)\r\n\r\nmeta Submodule\r\n~~~~~~~~~~~~~~\r\n\r\nProvides extracting source code of ``cwordtm`` module and adding timing and code-showing features\r\nto all functions of the module.\r\n\r\n.. code:: python\r\n\r\n   print(meta.get_module_info())\r\n\r\n   print(meta.get_submodule_info('viz', detailed=True))\r\n\r\n\r\nquot Submodule\r\n~~~~~~~~~~~~~~\r\n\r\nProvides functions to extract the quotation source Scripture in OT based on the presribed NT Scripture.\r\n\r\n.. code:: python\r\n\r\n   cdf = util.load_word('cuv.csv')\r\n   crom8 = util.extract2(cdf, 'Rom 8')\r\n   \r\n   quot.show_quot(crom8, lang='chi')\r\n\r\npivot Submodule\r\n~~~~~~~~~~~~~~~\r\n\r\nProvides a pivot table of the prescribed text.\r\n\r\n.. code:: python\r\n\r\n   cdf = util.load_word('cuv.csv')\r\n\r\n   pivot.stat(cdf, chi=True)\r\n\r\nta Submodule\r\n~~~~~~~~~~~~\r\n\r\nProvides text analytics functions, including extracting the summarization of the prescribed text.\r\n\r\n.. code:: python\r\n\r\n   cdf = util.load_word('cuv.csv')\r\n   crom8 = util.extract2(cdf, 'Rom 8')\r\n\r\n   ta.summary_chi(crom8)\r\n\r\ntm Submodule\r\n~~~~~~~~~~~~~\r\n\r\nProvides text modeling functions, including LDA, NMF and BERTopics modeling.\r\n\r\n.. code:: python\r\n\r\n   lda = tm.lda_process(\"web.csv\", eval=True, timing=True)\r\n\r\n   nmf = tm.nmf_process(\"web.csv\", eval=True, code=1)\r\n\r\n   btm = tm.btm_process(\"cuv.csv\", chi=True, cat='ot', eval=True)\r\n\r\n   btm = tm.btm_process(\"cuv.csv\", chi=True, cat='nt', eval=True, code=2)\r\n\r\nutil Submodule\r\n~~~~~~~~~~~~~~\r\n\r\nProvides loading text and text preprocessing functions.\r\n\r\n.. code:: python\r\n\r\n   df = util.load_word()\r\n   cdf = util.load_word('cuv.csv')\r\n\r\n   df.head()\r\n   cdf.head()\r\n\r\n   rom8 = util.extract2(df, 'Rom 8')\r\n   crom8 = util.extract2(cdf, 'Rom 8')\r\n\r\nviz Submodule\r\n~~~~~~~~~~~~~\r\n\r\nWordcloud plotting from the prescribed text.\r\n\r\n.. code:: python\r\n\r\n   cdf = util.load_word('cuv.csv')\r\n\r\n   viz.chi_wordcloud(cdf)\r\n\r\nDemo\r\n----\r\n\r\nUsage demo file with output:\r\n\r\n#. On BBC News: `CWordTM_BBC.pdf <https://github.com/drjohnnycheng/CWordTM/blob/main/Demo/CWordTM_BBC.pdf>`_\r\n\r\n#. On Chinese Bible (CUV): `CWordTM_CUV.pdf <https://github.com/drjohnnycheng/CWordTM/blob/main/Demo/CWordTM_CUV.pdf>`_\r\n\r\nPaper\r\n-----\r\n\r\nFor a more detailed overview, you can read the demo paper: https://link.springer.com/chapter/10.1007/978-3-031-70242-6_4\r\n\r\nDocumentation\r\n-------------\r\n\r\n``cwordtm`` documentation can be reached from: https://cwordtm.readthedocs.io\r\n\r\nContributing\r\n------------\r\n\r\nInterested in contributing? Check out the contributing guidelines.\r\nPlease note that this project is released with a Code of Conduct. By\r\ncontributing to this project, you agree to abide by its terms.\r\n\r\nLicense\r\n-------\r\n\r\n``cwordtm`` was created by Dr. Johnny Cheng. It is licensed under the terms\r\nof the MIT license.\r\n\r\nCredits\r\n-------\r\n\r\n``cwordtm`` was created under the guidance of Jehovah, the Almighty God.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "CWordTM: Towards a Topic Modeling Toolkit from Low-Code to Pro-Code",
    "version": "0.7.1",
    "project_urls": {
        "Documentation": "https://cwordtm.readthedocs.io",
        "GitHub Repository": "https://github.com/drjohnnycheng/cwordtm"
    },
    "split_keywords": [
        "topic modeling",
        " bertopic",
        " lda",
        " nmf",
        " nlp",
        " holy bible",
        " chinese text preprocessing",
        " pre-packaging",
        " low-code",
        " pro-code",
        " meta programming",
        " cwordtm"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7e356ef6685cc1e9646568d965926b481552d90cdd0dfe71c89fd5bf007da44a",
                "md5": "7fc2a00695e41d124347c3381257e820",
                "sha256": "74378eb5cd182ac91e98cfa11230dae290751b89245668fed425da550a1f2901"
            },
            "downloads": -1,
            "filename": "cwordtm-0.7.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7fc2a00695e41d124347c3381257e820",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 18291495,
            "upload_time": "2024-11-21T10:22:51",
            "upload_time_iso_8601": "2024-11-21T10:22:51.789137Z",
            "url": "https://files.pythonhosted.org/packages/7e/35/6ef6685cc1e9646568d965926b481552d90cdd0dfe71c89fd5bf007da44a/cwordtm-0.7.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fcd02026c8d38d5e3f26aa9f5f5739fa14d6344af4a4a5a16bde9dd1bebfe918",
                "md5": "fa33a8f85b8dd0165d318b3b579b0f92",
                "sha256": "21d8682243fc7872d423eba366c17d3441e66acd2150dff08c26f3d01b9a9013"
            },
            "downloads": -1,
            "filename": "cwordtm-0.7.1.tar.gz",
            "has_sig": false,
            "md5_digest": "fa33a8f85b8dd0165d318b3b579b0f92",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 18234905,
            "upload_time": "2024-11-21T10:23:00",
            "upload_time_iso_8601": "2024-11-21T10:23:00.444363Z",
            "url": "https://files.pythonhosted.org/packages/fc/d0/2026c8d38d5e3f26aa9f5f5739fa14d6344af4a4a5a16bde9dd1bebfe918/cwordtm-0.7.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-21 10:23:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "drjohnnycheng",
    "github_project": "cwordtm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "cwordtm"
}
        
Elapsed time: 0.70771s