cycIFAAP


NamecycIFAAP JSON
Version 5.7.7 PyPI version JSON
download
home_pagehttps://www.thibault.biz/Research/cycIFAAP/cycIFAAP.html
SummaryCyclic ImmunoFluoresence (cycIF) Automatic Analysis Pipeline
upload_time2023-07-05 17:38:31
maintainerGuillaume THIBAULT
docs_urlNone
authorGuillaume THIBAULT, Erik Burlingame, Young Hwan Chang
requires_python>=3.8,<3.10
licenseMIT
keywords cyclic immunofluorescence cycif immunofluorescence registration segmentation features features extraction restore napari nuclei nucleus cells cell cell analysis cell type
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Cyclic ImmunoFluorescence Automatic Analysis Pipeline

This pipeline takes as input a set of cyclic immunofluorescence (cycIF) images and performs the following operations:
 - Registration
 - Nuclei segmentation (using CellPose or own trained Mask R-CNN model)
 - Background subtraction
 - Compute each marker exclusiveness to be used with Restore
 - Use Restore when possible for automatic gating (optionnal)
 - Features extraction
 - Cell type computation
 - Automatic visualization using Napari
 - Quality control (tissue loss and Restore based)


For installation, more information/details and full examples with code and data, visit:
https://www.thibault.biz/Research/cycIFAAP/cycIFAAP.html

            

Raw data

            {
    "_id": null,
    "home_page": "https://www.thibault.biz/Research/cycIFAAP/cycIFAAP.html",
    "name": "cycIFAAP",
    "maintainer": "Guillaume THIBAULT",
    "docs_url": null,
    "requires_python": ">=3.8,<3.10",
    "maintainer_email": "thibaulg@ohsu.edu",
    "keywords": "cyclic Immunofluorescence,cycif,immunofluorescence,registration,segmentation,features,features extraction,restore,napari,nuclei,nucleus,cells,cell,cell analysis,cell type",
    "author": "Guillaume THIBAULT, Erik Burlingame, Young Hwan Chang",
    "author_email": "thibaulg@ohsu.edu, chanyo@ohsu.edu",
    "download_url": "https://files.pythonhosted.org/packages/50/1f/e14b0b14a3637c0a8d3fbebe65c3987dcf8f95ca98d60fdd07d53cd1e713/cycIFAAP-5.7.7.tar.gz",
    "platform": null,
    "description": "# Cyclic ImmunoFluorescence Automatic Analysis Pipeline\n\nThis pipeline takes as input a set of cyclic immunofluorescence (cycIF) images and performs the following operations:\n - Registration\n - Nuclei segmentation (using CellPose or own trained Mask R-CNN model)\n - Background subtraction\n - Compute each marker exclusiveness to be used with Restore\n - Use Restore when possible for automatic gating (optionnal)\n - Features extraction\n - Cell type computation\n - Automatic visualization using Napari\n - Quality control (tissue loss and Restore based)\n\n\nFor installation, more information/details and full examples with code and data, visit:\nhttps://www.thibault.biz/Research/cycIFAAP/cycIFAAP.html\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Cyclic ImmunoFluoresence (cycIF) Automatic Analysis Pipeline",
    "version": "5.7.7",
    "project_urls": {
        "Download": "https://www.thibault.biz/Doc/cycIFAAP/cycIFAAP-5.7.7.tar.gz",
        "Homepage": "https://www.thibault.biz/Research/cycIFAAP/cycIFAAP.html"
    },
    "split_keywords": [
        "cyclic immunofluorescence",
        "cycif",
        "immunofluorescence",
        "registration",
        "segmentation",
        "features",
        "features extraction",
        "restore",
        "napari",
        "nuclei",
        "nucleus",
        "cells",
        "cell",
        "cell analysis",
        "cell type"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3476a777c10829179369e46553961d31e1d166896cb7d9f090e364202ba7d9bc",
                "md5": "da784dcb3348b0bd398e8c283b4f5214",
                "sha256": "34dded3f37297316281bdfc57198cf04a5fd222d9d811551ace988c1715c83b4"
            },
            "downloads": -1,
            "filename": "cycIFAAP-5.7.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "da784dcb3348b0bd398e8c283b4f5214",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8,<3.10",
            "size": 60883786,
            "upload_time": "2023-07-05T17:38:24",
            "upload_time_iso_8601": "2023-07-05T17:38:24.666129Z",
            "url": "https://files.pythonhosted.org/packages/34/76/a777c10829179369e46553961d31e1d166896cb7d9f090e364202ba7d9bc/cycIFAAP-5.7.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "501fe14b0b14a3637c0a8d3fbebe65c3987dcf8f95ca98d60fdd07d53cd1e713",
                "md5": "a6100268521e5142227e35d5d25beea8",
                "sha256": "24b9f2da4086906a356a46da36984f8bd2a10b66ff418a873fa5965672c10cc7"
            },
            "downloads": -1,
            "filename": "cycIFAAP-5.7.7.tar.gz",
            "has_sig": false,
            "md5_digest": "a6100268521e5142227e35d5d25beea8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8,<3.10",
            "size": 60879225,
            "upload_time": "2023-07-05T17:38:31",
            "upload_time_iso_8601": "2023-07-05T17:38:31.441152Z",
            "url": "https://files.pythonhosted.org/packages/50/1f/e14b0b14a3637c0a8d3fbebe65c3987dcf8f95ca98d60fdd07d53cd1e713/cycIFAAP-5.7.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-05 17:38:31",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "cycifaap"
}
        
Elapsed time: 1.39157s