cyclical


Namecyclical JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/jojoee/cyclical
SummaryEncode item list into cyclical
upload_time2023-08-27 13:45:10
maintainer
docs_urlNone
authorNathachai Thongniran
requires_python
licenseMIT
keywords cyclical cyclic normalization normalize
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Cyclical

[![continuous integration](https://github.com/jojoee/cyclical/workflows/continuous%20integration/badge.svg?branch=master)](https://github.com/jojoee/cyclical/actions/workflows/continuous-integration.yml)
[![continuous delivery](https://github.com/jojoee/cyclical/workflows/continuous%20delivery/badge.svg?branch=master)](https://github.com/jojoee/cyclical/actions/workflows/continuous-delivery.yml)

[![PyPI version fury.io](https://badge.fury.io/py/cyclical.svg)](https://pypi.python.org/pypi/cyclical/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![codecov](https://codecov.io/gh/jojoee/cyclical/branch/master/graph/badge.svg)](https://codecov.io/gh/jojoee/cyclical)

Encode item list into "cyclical"

## Installation

```
pip install cyclical

# or
git clone https://github.com/jojoee/cyclical
cd cyclical
python setup.py install
```

## Usage

```python
from cyclical import cyclical

n_rows = 1000
n_hrs = 24
hrs = [item % n_hrs for item in list(range(0, n_rows, 1))]
encoded_hrs = cyclical.encode(hrs, n_hrs)
print(encoded_hrs)

"""
([0.0, 0.25881904510252074, 0.49999999999999994, 0.7071067811865476, 0.8660254037844386,
0.9659258262890682, 1.0, 0.9659258262890683, 0.8660254037844387, 0.7071067811865476,
0.5000000000000003, 0.258819045102521, 1.2246467991473532e-16, -0.25881904510252035,
-0.4999999999999997, ...
"""
```

## Real use case

TLTR: normalize cyclical data (e.g. month number [0-11], hour number [0, 23]) by mapping them into sin and cos of 1-radius-circle

2 years ago while I was doing the “ocean current prediction model”. From the background knowledge of its nature which the ocean current has a strong relation with wind speed and wind speed also based on the season. So, I try to give the model “month number” which starts with 0 and ends with 11.

With the deep learning model, I have to normalize data into [0, 1] which 1 refers to the maximum magnitude. There have many ways to normalize data such as min/max, mean/std, and other normalization but it can’t apply to this “month number” data.

“Month number” has a cyclical characteristic, so month-number-11 can’t be compared with month-number-0 as it showed, Thus I have to represent “month number” with other normalization method instead which is “cyclical” in this module.

```python
import pandas as pd
from cyclical import cyclical
import math
import matplotlib.pyplot as plt
%matplotlib inline

n_rows = 1000
n_hrs = 24
hrs = [item % n_hrs for item in list(range(0, n_rows, 1))]
encoded_hrs = cyclical.encode(hrs, n_hrs)
# print(encoded_hrs)

n_months = 12
months = [item % n_months for item in list(range(0, n_rows, 1))]
encoded_months = cyclical.encode(months, n_months)

# datframe
df = pd.DataFrame({
    # hr
    'hr_sin': encoded_hrs[0],
    'hr_cos': encoded_hrs[1],

    # month
    'month_sin': encoded_months[0],
    'month_cos': encoded_months[1],
})
display(df)

# plot
n_samples = math.floor(n_rows * 0.1)
df.sample(n_samples).plot.scatter('hr_sin', 'hr_cos').set_aspect('equal')
plt.show()

# plot
df.sample(n_samples).plot.scatter('month_sin', 'month_cos').set_aspect('equal')
plt.show()
```

![example-df](https://raw.githack.com/jojoee/cyclical/master/example/example-df.png)

![hour-number](https://raw.githack.com/jojoee/cyclical/master/example/hour-number.png)
![month-number](https://raw.githack.com/jojoee/cyclical/master/example/month-number.png)

## Reference
- [Encoding cyclical continuous features - 24-hour time](https://ianlondon.github.io/blog/encoding-cyclical-features-24hour-time/)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jojoee/cyclical",
    "name": "cyclical",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "cyclical,cyclic,normalization,normalize",
    "author": "Nathachai Thongniran",
    "author_email": "inid3a@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/b3/ce/abd48b33762a2f0d9245bdd1df70f7e36ca76deb9970860683a1638b5cc6/cyclical-1.0.2.tar.gz",
    "platform": null,
    "description": "# Cyclical\n\n[![continuous integration](https://github.com/jojoee/cyclical/workflows/continuous%20integration/badge.svg?branch=master)](https://github.com/jojoee/cyclical/actions/workflows/continuous-integration.yml)\n[![continuous delivery](https://github.com/jojoee/cyclical/workflows/continuous%20delivery/badge.svg?branch=master)](https://github.com/jojoee/cyclical/actions/workflows/continuous-delivery.yml)\n\n[![PyPI version fury.io](https://badge.fury.io/py/cyclical.svg)](https://pypi.python.org/pypi/cyclical/)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![codecov](https://codecov.io/gh/jojoee/cyclical/branch/master/graph/badge.svg)](https://codecov.io/gh/jojoee/cyclical)\n\nEncode item list into \"cyclical\"\n\n## Installation\n\n```\npip install cyclical\n\n# or\ngit clone https://github.com/jojoee/cyclical\ncd cyclical\npython setup.py install\n```\n\n## Usage\n\n```python\nfrom cyclical import cyclical\n\nn_rows = 1000\nn_hrs = 24\nhrs = [item % n_hrs for item in list(range(0, n_rows, 1))]\nencoded_hrs = cyclical.encode(hrs, n_hrs)\nprint(encoded_hrs)\n\n\"\"\"\n([0.0, 0.25881904510252074, 0.49999999999999994, 0.7071067811865476, 0.8660254037844386,\n0.9659258262890682, 1.0, 0.9659258262890683, 0.8660254037844387, 0.7071067811865476,\n0.5000000000000003, 0.258819045102521, 1.2246467991473532e-16, -0.25881904510252035,\n-0.4999999999999997, ...\n\"\"\"\n```\n\n## Real use case\n\nTLTR: normalize cyclical data (e.g. month number [0-11], hour number [0, 23]) by mapping them into sin and cos of 1-radius-circle\n\n2 years ago while I was doing the \u201cocean current prediction model\u201d. From the background knowledge of its nature which the ocean current has a strong relation with wind speed and wind speed also based on the season. So, I try to give the model \u201cmonth number\u201d which starts with 0 and ends with 11.\n\nWith the deep learning model, I have to normalize data into [0, 1] which 1 refers to the maximum magnitude. There have many ways to normalize data such as min/max, mean/std, and other normalization but it can\u2019t apply to this \u201cmonth number\u201d data.\n\n\u201cMonth number\u201d has a cyclical characteristic, so month-number-11 can\u2019t be compared with month-number-0 as it showed, Thus I have to represent \u201cmonth number\u201d with other normalization method instead which is \u201ccyclical\u201d in this module.\n\n```python\nimport pandas as pd\nfrom cyclical import cyclical\nimport math\nimport matplotlib.pyplot as plt\n%matplotlib inline\n\nn_rows = 1000\nn_hrs = 24\nhrs = [item % n_hrs for item in list(range(0, n_rows, 1))]\nencoded_hrs = cyclical.encode(hrs, n_hrs)\n# print(encoded_hrs)\n\nn_months = 12\nmonths = [item % n_months for item in list(range(0, n_rows, 1))]\nencoded_months = cyclical.encode(months, n_months)\n\n# datframe\ndf = pd.DataFrame({\n    # hr\n    'hr_sin': encoded_hrs[0],\n    'hr_cos': encoded_hrs[1],\n\n    # month\n    'month_sin': encoded_months[0],\n    'month_cos': encoded_months[1],\n})\ndisplay(df)\n\n# plot\nn_samples = math.floor(n_rows * 0.1)\ndf.sample(n_samples).plot.scatter('hr_sin', 'hr_cos').set_aspect('equal')\nplt.show()\n\n# plot\ndf.sample(n_samples).plot.scatter('month_sin', 'month_cos').set_aspect('equal')\nplt.show()\n```\n\n![example-df](https://raw.githack.com/jojoee/cyclical/master/example/example-df.png)\n\n![hour-number](https://raw.githack.com/jojoee/cyclical/master/example/hour-number.png)\n![month-number](https://raw.githack.com/jojoee/cyclical/master/example/month-number.png)\n\n## Reference\n- [Encoding cyclical continuous features - 24-hour time](https://ianlondon.github.io/blog/encoding-cyclical-features-24hour-time/)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Encode item list into cyclical",
    "version": "1.0.2",
    "project_urls": {
        "Homepage": "https://github.com/jojoee/cyclical"
    },
    "split_keywords": [
        "cyclical",
        "cyclic",
        "normalization",
        "normalize"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cefbce3323c05b54a7a4a96afaf708fa63998950909333fbda8d8245e0468070",
                "md5": "21716c6574a5971caec79bda6441d8b8",
                "sha256": "45818f66a745ec67d061621c47665f756ff4f45fd0f5ab0866cd4f9166359f20"
            },
            "downloads": -1,
            "filename": "cyclical-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "21716c6574a5971caec79bda6441d8b8",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3988,
            "upload_time": "2023-08-27T13:45:09",
            "upload_time_iso_8601": "2023-08-27T13:45:09.610472Z",
            "url": "https://files.pythonhosted.org/packages/ce/fb/ce3323c05b54a7a4a96afaf708fa63998950909333fbda8d8245e0468070/cyclical-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b3ceabd48b33762a2f0d9245bdd1df70f7e36ca76deb9970860683a1638b5cc6",
                "md5": "1199755ad1287f62bef03a4a1f99902a",
                "sha256": "2199267d994866186efc13e4ad1802cfa8ef6eb81cd6f2fa4268f08a5dd3ffd3"
            },
            "downloads": -1,
            "filename": "cyclical-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "1199755ad1287f62bef03a4a1f99902a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3896,
            "upload_time": "2023-08-27T13:45:10",
            "upload_time_iso_8601": "2023-08-27T13:45:10.686968Z",
            "url": "https://files.pythonhosted.org/packages/b3/ce/abd48b33762a2f0d9245bdd1df70f7e36ca76deb9970860683a1638b5cc6/cyclical-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-27 13:45:10",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jojoee",
    "github_project": "cyclical",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "cyclical"
}
        
Elapsed time: 0.84051s