dag-dq-generator


Namedag-dq-generator JSON
Version 1.0.5 PyPI version JSON
download
home_pagehttps://git.corp.adobe.com/ccea/dag-dq-generator
SummaryDPaaS Airflow DAG (Dynamic Acyclic Graph) and DQ (Data Quality) generator
upload_time2023-12-06 16:52:20
maintainerNone
docs_urlNone
authorCI DMe Data Engineering
requires_pythonNone
licenseMIT
keywords airflow dag data-quality
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # dag-dq-generator
DPaaS Airflow DAG (Dynamic Acyclic Graph) and DQ (Data Quality) generator.

*dag-dq-generator* is a DPaaS [Apache Airflow](https://github.com/apache/incubator-airflow) Airflow DAG (Dynamic Acyclic Graph) and DQ (Data Quality) generator  from YAML configuration files.
- [Usage](#usage)
- [YAML Definition](#yaml-definition)
- [Benefits](#benefits)
- [Contributing](#contributing)

## Usage
### Setup
*dag-dq-generator* requires Python 3.6.0+. To set up your environment, you can run `sh build.sh` which installs the required Python packages and run the generator program. Otherwise, you can run `pip install -r requirements.txt` to install the required Python packages and run `python dag_generator.py` with the following parameters:
* `--config-path` defines the path to the configurations folder. Defaults to `./configs/`
* `--dag-storage-path` defines the path to the folder where generated DAGs will be stored. Defaults to `./dags/`
* `--dq-storage-path` defines the path to the folder where DQ SQL files will be stored. Defaults to `./sql/`

## YAML Definition

## Benefits

* Construct DAGs without knowing Python
* Construct DAGs without learning Airflow primitives
* Avoid duplicative code

## Contributing

Contributions are welcome! Just submit a Pull Request or Github Issue. Feel free to join the discussions on the `#dag-dq-generator` Slack channel.

            

Raw data

            {
    "_id": null,
    "home_page": "https://git.corp.adobe.com/ccea/dag-dq-generator",
    "name": "dag-dq-generator",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "airflow dag data-quality",
    "author": "CI DMe Data Engineering",
    "author_email": "ccea-data-engineering@adobe.com",
    "download_url": "https://files.pythonhosted.org/packages/ea/8a/ff3816b7e126a77b0726cb5a426505a78dbf2da35d25d87cef0c2436dde3/dag-dq-generator-1.0.5.tar.gz",
    "platform": null,
    "description": "# dag-dq-generator\nDPaaS Airflow DAG (Dynamic Acyclic Graph) and DQ (Data Quality) generator.\n\n*dag-dq-generator* is a DPaaS [Apache Airflow](https://github.com/apache/incubator-airflow) Airflow DAG (Dynamic Acyclic Graph) and DQ (Data Quality) generator  from YAML configuration files.\n- [Usage](#usage)\n- [YAML Definition](#yaml-definition)\n- [Benefits](#benefits)\n- [Contributing](#contributing)\n\n## Usage\n### Setup\n*dag-dq-generator* requires Python 3.6.0+. To set up your environment, you can run `sh build.sh` which installs the required Python packages and run the generator program. Otherwise, you can run `pip install -r requirements.txt` to install the required Python packages and run `python dag_generator.py` with the following parameters:\n* `--config-path` defines the path to the configurations folder. Defaults to `./configs/`\n* `--dag-storage-path` defines the path to the folder where generated DAGs will be stored. Defaults to `./dags/`\n* `--dq-storage-path` defines the path to the folder where DQ SQL files will be stored. Defaults to `./sql/`\n\n## YAML Definition\n\n## Benefits\n\n* Construct DAGs without knowing Python\n* Construct DAGs without learning Airflow primitives\n* Avoid duplicative code\n\n## Contributing\n\nContributions are welcome! Just submit a Pull Request or Github Issue. Feel free to join the discussions on the `#dag-dq-generator` Slack channel.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "DPaaS Airflow DAG (Dynamic Acyclic Graph) and DQ (Data Quality) generator",
    "version": "1.0.5",
    "project_urls": {
        "Homepage": "https://git.corp.adobe.com/ccea/dag-dq-generator"
    },
    "split_keywords": [
        "airflow",
        "dag",
        "data-quality"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ea8aff3816b7e126a77b0726cb5a426505a78dbf2da35d25d87cef0c2436dde3",
                "md5": "50f78b4e2195a7a2ee7a2b58cd36fb6c",
                "sha256": "52d9f8d6ef1bc4a895dc8e3834e3aee4dc54e120a4631c4a9b925362b70178dc"
            },
            "downloads": -1,
            "filename": "dag-dq-generator-1.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "50f78b4e2195a7a2ee7a2b58cd36fb6c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 28541,
            "upload_time": "2023-12-06T16:52:20",
            "upload_time_iso_8601": "2023-12-06T16:52:20.390359Z",
            "url": "https://files.pythonhosted.org/packages/ea/8a/ff3816b7e126a77b0726cb5a426505a78dbf2da35d25d87cef0c2436dde3/dag-dq-generator-1.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-06 16:52:20",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "dag-dq-generator"
}
        
Elapsed time: 3.34764s