daisdk


Namedaisdk JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://bigquant.com
Summarybigquant 数据SDK
upload_time2024-05-06 02:23:26
maintainerNone
docs_urlNone
authorBigQuant
requires_python>=3.8
licenseMIT
keywords 数据sdk dai bigquant
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # bigquant 数据SDK

bigquant 数据SDK 是专为金融数据查询和操作设计的强大工具,提供与 bigquant 数据服务的无缝集成。该 SDK 适用于需要高效、可靠地访问高质量金融数据集的金融分析师、量化研究员和数据科学家。

## 特性

- **认证**: 使用您的访问密钥和秘密密钥安全地认证您的 bigquant 账户。
- **配额管理**: 轻松检索当前配额信息,监控数据使用情况。
- **数据读取**: 轻松从 bigquant 数据库(BDB)读取金融数据到不同的格式,如 Apache Arrow 表或 Pandas DataFrame,支持分区过滤和列选择。
- **数据写入**: (尚不支持)未来将具有分区、索引、处理重复数据、排序和文档支持等高级功能将数据写回 BDB。
- **数据删除**: (尚不支持)未来将可以安全删除不再需要的数据。

## 快速开始

要开始使用 bigquant 数据SDK,首先使用 pip 安装包:

```shell
pip3 install daisdk
```

然后,您可以认证并开始查询金融数据:

```python
from daisdk import dai

# 使用 bigquant 认证
dai.login('您的访问密钥', '您的秘密密钥')

# 创建 DataSource 实例
data_source = dai.DataSource('您的数据源ID')

# 读取数据为 Apache Arrow 表
arrow_table = data_source.read_bdb()

# 或者将数据读取为 Pandas DataFrame
pandas_df = data_source.read_bdb(as_type=pd.DataFrame)

# 注意: 数据写入和数据删除功能目前尚不支持。
```

## 文档

有关使用 bigquant 数据SDK 的更多信息,请参考我们的[文档](https://bigquant.com/wiki/doc/sdk-gMEOV2bGYi)。

## 支持

如果您需要帮助或有任何问题,请通过我们的[官方网站](https://bigquant.com)联系我们。

---

今天就开始您的数据驱动投资之旅吧,使用 bigquant 数据SDK!

            

Raw data

            {
    "_id": null,
    "home_page": "https://bigquant.com",
    "name": "daisdk",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "\u6570\u636eSDK, dai, bigquant",
    "author": "BigQuant",
    "author_email": "bigquant@bigquant.com",
    "download_url": "https://files.pythonhosted.org/packages/b9/e3/f997d34b916ce70b8644949f8acd5ba018fa77085160023d37e73c162fe1/daisdk-1.0.2.tar.gz",
    "platform": null,
    "description": "# bigquant \u6570\u636eSDK\n\nbigquant \u6570\u636eSDK \u662f\u4e13\u4e3a\u91d1\u878d\u6570\u636e\u67e5\u8be2\u548c\u64cd\u4f5c\u8bbe\u8ba1\u7684\u5f3a\u5927\u5de5\u5177\uff0c\u63d0\u4f9b\u4e0e bigquant \u6570\u636e\u670d\u52a1\u7684\u65e0\u7f1d\u96c6\u6210\u3002\u8be5 SDK \u9002\u7528\u4e8e\u9700\u8981\u9ad8\u6548\u3001\u53ef\u9760\u5730\u8bbf\u95ee\u9ad8\u8d28\u91cf\u91d1\u878d\u6570\u636e\u96c6\u7684\u91d1\u878d\u5206\u6790\u5e08\u3001\u91cf\u5316\u7814\u7a76\u5458\u548c\u6570\u636e\u79d1\u5b66\u5bb6\u3002\n\n## \u7279\u6027\n\n- **\u8ba4\u8bc1**: \u4f7f\u7528\u60a8\u7684\u8bbf\u95ee\u5bc6\u94a5\u548c\u79d8\u5bc6\u5bc6\u94a5\u5b89\u5168\u5730\u8ba4\u8bc1\u60a8\u7684 bigquant \u8d26\u6237\u3002\n- **\u914d\u989d\u7ba1\u7406**: \u8f7b\u677e\u68c0\u7d22\u5f53\u524d\u914d\u989d\u4fe1\u606f\uff0c\u76d1\u63a7\u6570\u636e\u4f7f\u7528\u60c5\u51b5\u3002\n- **\u6570\u636e\u8bfb\u53d6**: \u8f7b\u677e\u4ece bigquant \u6570\u636e\u5e93\uff08BDB\uff09\u8bfb\u53d6\u91d1\u878d\u6570\u636e\u5230\u4e0d\u540c\u7684\u683c\u5f0f\uff0c\u5982 Apache Arrow \u8868\u6216 Pandas DataFrame\uff0c\u652f\u6301\u5206\u533a\u8fc7\u6ee4\u548c\u5217\u9009\u62e9\u3002\n- **\u6570\u636e\u5199\u5165**: \uff08\u5c1a\u4e0d\u652f\u6301\uff09\u672a\u6765\u5c06\u5177\u6709\u5206\u533a\u3001\u7d22\u5f15\u3001\u5904\u7406\u91cd\u590d\u6570\u636e\u3001\u6392\u5e8f\u548c\u6587\u6863\u652f\u6301\u7b49\u9ad8\u7ea7\u529f\u80fd\u5c06\u6570\u636e\u5199\u56de BDB\u3002\n- **\u6570\u636e\u5220\u9664**: \uff08\u5c1a\u4e0d\u652f\u6301\uff09\u672a\u6765\u5c06\u53ef\u4ee5\u5b89\u5168\u5220\u9664\u4e0d\u518d\u9700\u8981\u7684\u6570\u636e\u3002\n\n## \u5feb\u901f\u5f00\u59cb\n\n\u8981\u5f00\u59cb\u4f7f\u7528 bigquant \u6570\u636eSDK\uff0c\u9996\u5148\u4f7f\u7528 pip \u5b89\u88c5\u5305\uff1a\n\n```shell\npip3 install daisdk\n```\n\n\u7136\u540e\uff0c\u60a8\u53ef\u4ee5\u8ba4\u8bc1\u5e76\u5f00\u59cb\u67e5\u8be2\u91d1\u878d\u6570\u636e\uff1a\n\n```python\nfrom daisdk import dai\n\n# \u4f7f\u7528 bigquant \u8ba4\u8bc1\ndai.login('\u60a8\u7684\u8bbf\u95ee\u5bc6\u94a5', '\u60a8\u7684\u79d8\u5bc6\u5bc6\u94a5')\n\n# \u521b\u5efa DataSource \u5b9e\u4f8b\ndata_source = dai.DataSource('\u60a8\u7684\u6570\u636e\u6e90ID')\n\n# \u8bfb\u53d6\u6570\u636e\u4e3a Apache Arrow \u8868\narrow_table = data_source.read_bdb()\n\n# \u6216\u8005\u5c06\u6570\u636e\u8bfb\u53d6\u4e3a Pandas DataFrame\npandas_df = data_source.read_bdb(as_type=pd.DataFrame)\n\n# \u6ce8\u610f: \u6570\u636e\u5199\u5165\u548c\u6570\u636e\u5220\u9664\u529f\u80fd\u76ee\u524d\u5c1a\u4e0d\u652f\u6301\u3002\n```\n\n## \u6587\u6863\n\n\u6709\u5173\u4f7f\u7528 bigquant \u6570\u636eSDK \u7684\u66f4\u591a\u4fe1\u606f\uff0c\u8bf7\u53c2\u8003\u6211\u4eec\u7684[\u6587\u6863](https://bigquant.com/wiki/doc/sdk-gMEOV2bGYi)\u3002\n\n## \u652f\u6301\n\n\u5982\u679c\u60a8\u9700\u8981\u5e2e\u52a9\u6216\u6709\u4efb\u4f55\u95ee\u9898\uff0c\u8bf7\u901a\u8fc7\u6211\u4eec\u7684[\u5b98\u65b9\u7f51\u7ad9](https://bigquant.com)\u8054\u7cfb\u6211\u4eec\u3002\n\n---\n\n\u4eca\u5929\u5c31\u5f00\u59cb\u60a8\u7684\u6570\u636e\u9a71\u52a8\u6295\u8d44\u4e4b\u65c5\u5427\uff0c\u4f7f\u7528 bigquant \u6570\u636eSDK\uff01\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "bigquant \u6570\u636eSDK",
    "version": "1.0.2",
    "project_urls": {
        "Documentation": "https://bigquant.com/wiki/doc/sdk-gMEOV2bGYi",
        "Homepage": "https://bigquant.com"
    },
    "split_keywords": [
        "\u6570\u636esdk",
        " dai",
        " bigquant"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b71576df37c7f8ac92c027f69c3486f926b89c6c3e3e406c6a65672f607bbb20",
                "md5": "4de545406aafb6d0e6c8e6a8e3419c19",
                "sha256": "fe9477078ccedec202d40ce684b5ab66153095443ac1cde0a4d6ed0f5d8ca7c9"
            },
            "downloads": -1,
            "filename": "daisdk-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4de545406aafb6d0e6c8e6a8e3419c19",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 5866,
            "upload_time": "2024-05-06T02:23:23",
            "upload_time_iso_8601": "2024-05-06T02:23:23.870332Z",
            "url": "https://files.pythonhosted.org/packages/b7/15/76df37c7f8ac92c027f69c3486f926b89c6c3e3e406c6a65672f607bbb20/daisdk-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b9e3f997d34b916ce70b8644949f8acd5ba018fa77085160023d37e73c162fe1",
                "md5": "9dcec1980e81cd0bd6febc5e2653489e",
                "sha256": "e11796dc2ff8ff6e808405a82a981fd5b9c87669a06e10dce4573becad57a84f"
            },
            "downloads": -1,
            "filename": "daisdk-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "9dcec1980e81cd0bd6febc5e2653489e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 6113,
            "upload_time": "2024-05-06T02:23:26",
            "upload_time_iso_8601": "2024-05-06T02:23:26.129005Z",
            "url": "https://files.pythonhosted.org/packages/b9/e3/f997d34b916ce70b8644949f8acd5ba018fa77085160023d37e73c162fe1/daisdk-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-06 02:23:26",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "daisdk"
}
        
Elapsed time: 0.25047s