dame-flame


Namedame-flame JSON
Version 0.71 PyPI version JSON
download
home_pagehttps://github.com/almost-matching-exactly/DAME-FLAME-Python-Package
SummaryCausal Inference Covariate Matching
upload_time2024-06-10 19:43:50
maintainerNone
docs_urlNone
authorNeha R. Gupta
requires_python>=3.6
licenseMIT
keywords causal inference matching econometrics data machine learning flame dame causality ml
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            
[![Build Status](https://app.travis-ci.com/almost-matching-exactly/DAME-FLAME-Python-Package.svg?branch=master)](https://app.travis-ci.com/almost-matching-exactly/DAME-FLAME-Python-Package)
[![Coverage Status](https://coveralls.io/repos/github/almost-matching-exactly/DAME-FLAME-Python-Package/badge.svg)](https://coveralls.io/github/almost-matching-exactly/DAME-FLAME-Python-Package)

<!-- Comment hi.  -->
# DAME-FLAME
A Python package for performing matching for observational causal inference on datasets containing discrete covariates
--------------------------------------------------

## Documentation [here](https://almost-matching-exactly.github.io/DAME-FLAME-Python-Package/)

DAME-FLAME is a Python package for performing matching for observational causal inference on datasets containing discrete covariates. It implements the Dynamic Almost Matching Exactly (DAME) and Fast, Large-Scale Almost Matching Exactly (FLAME) algorithms, which match treatment and control units on subsets of the covariates. The resulting matched groups are interpretable, because the matches are made on covariates, and high-quality, because machine learning is used to determine which covariates are important to match on.

### Installation

#### Dependencies
`dame-flame` requires Python version (>=3.6.5). Install from [here](https://www.python.org/downloads/) if needed.

- pandas>=0.11.0
- numpy>= 1.16.5
- scikit-learn>=0.23.2


If your python version does not have these packages, install from [here](https://packaging.python.org/tutorials/installing-packages/).

To run the examples in the examples folder (these are not part of the package), Jupyter Notebooks or Jupyter Lab (available [here](https://jupyter.org/install)) and Matplotlib (>=2.0.0) is also required.

#### User Installation

Download from PyPi via
$ pip install dame-flame



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/almost-matching-exactly/DAME-FLAME-Python-Package",
    "name": "dame-flame",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "Causal Inference Matching Econometrics Data Machine Learning FLAME DAME Causality ML",
    "author": "Neha R. Gupta",
    "author_email": "neha.r.gupta@duke.edu",
    "download_url": "https://files.pythonhosted.org/packages/99/15/78abe6f1964a332980b3d81023a22904d96bf1850c1538bf503986130734/dame_flame-0.71.tar.gz",
    "platform": null,
    "description": "\n[![Build Status](https://app.travis-ci.com/almost-matching-exactly/DAME-FLAME-Python-Package.svg?branch=master)](https://app.travis-ci.com/almost-matching-exactly/DAME-FLAME-Python-Package)\n[![Coverage Status](https://coveralls.io/repos/github/almost-matching-exactly/DAME-FLAME-Python-Package/badge.svg)](https://coveralls.io/github/almost-matching-exactly/DAME-FLAME-Python-Package)\n\n<!-- Comment hi.  -->\n# DAME-FLAME\nA Python package for performing matching for observational causal inference on datasets containing discrete covariates\n--------------------------------------------------\n\n## Documentation [here](https://almost-matching-exactly.github.io/DAME-FLAME-Python-Package/)\n\nDAME-FLAME is a Python package for performing matching for observational causal inference on datasets containing discrete covariates. It implements the Dynamic Almost Matching Exactly (DAME) and Fast, Large-Scale Almost Matching Exactly (FLAME) algorithms, which match treatment and control units on subsets of the covariates. The resulting matched groups are interpretable, because the matches are made on covariates, and high-quality, because machine learning is used to determine which covariates are important to match on.\n\n### Installation\n\n#### Dependencies\n`dame-flame` requires Python version (>=3.6.5). Install from [here](https://www.python.org/downloads/) if needed.\n\n- pandas>=0.11.0\n- numpy>= 1.16.5\n- scikit-learn>=0.23.2\n\n\nIf your python version does not have these packages, install from [here](https://packaging.python.org/tutorials/installing-packages/).\n\nTo run the examples in the examples folder (these are not part of the package), Jupyter Notebooks or Jupyter Lab (available [here](https://jupyter.org/install)) and Matplotlib (>=2.0.0) is also required.\n\n#### User Installation\n\nDownload from PyPi via\n$ pip install dame-flame\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Causal Inference Covariate Matching",
    "version": "0.71",
    "project_urls": {
        "Homepage": "https://github.com/almost-matching-exactly/DAME-FLAME-Python-Package"
    },
    "split_keywords": [
        "causal",
        "inference",
        "matching",
        "econometrics",
        "data",
        "machine",
        "learning",
        "flame",
        "dame",
        "causality",
        "ml"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3a5ba614d9c2ddde1abf7a9d30f526b9409feb678ac5c9b62093cf051b1b2bda",
                "md5": "9dd13da65b9cbfd52bd9c351a128a305",
                "sha256": "10fbf498dc18fd1044c6eb1a1c8d97e628ad651610b45f3aed614e3427f60f57"
            },
            "downloads": -1,
            "filename": "dame_flame-0.71-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9dd13da65b9cbfd52bd9c351a128a305",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 31590,
            "upload_time": "2024-06-10T19:43:48",
            "upload_time_iso_8601": "2024-06-10T19:43:48.531415Z",
            "url": "https://files.pythonhosted.org/packages/3a/5b/a614d9c2ddde1abf7a9d30f526b9409feb678ac5c9b62093cf051b1b2bda/dame_flame-0.71-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "991578abe6f1964a332980b3d81023a22904d96bf1850c1538bf503986130734",
                "md5": "d59edd859c26dbb5dd6d7f3f85300e4d",
                "sha256": "b5e00378d805d4d6f410fff8fd4f3cdf618874313e10bdd27f8b21f1179f36db"
            },
            "downloads": -1,
            "filename": "dame_flame-0.71.tar.gz",
            "has_sig": false,
            "md5_digest": "d59edd859c26dbb5dd6d7f3f85300e4d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 24220,
            "upload_time": "2024-06-10T19:43:50",
            "upload_time_iso_8601": "2024-06-10T19:43:50.380151Z",
            "url": "https://files.pythonhosted.org/packages/99/15/78abe6f1964a332980b3d81023a22904d96bf1850c1538bf503986130734/dame_flame-0.71.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-10 19:43:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "almost-matching-exactly",
    "github_project": "DAME-FLAME-Python-Package",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "dame-flame"
}
        
Elapsed time: 0.83811s