danila


Namedanila JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/Arseniy-Zhuck/danilav1
SummaryThis is the module for detecting and classifying text on rama pictures
upload_time2024-04-15 06:07:24
maintainerNone
docs_urlNone
authorarseniy_zhuck
requires_python>=3.6
licenseNone
keywords rama detect machine-learning computer-vision
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # To install project made 
    git clone
    pip install -r requirements.txt
# All user methods are in 
    Danila class

# makes object and loads all neuro models
    danila = Danila()

# returns string - class of rama using CNN network
    def rama_classify(self, image_path)

# returns image_path in danilav1 root with drawn rectangle and text - rama and its class
    def rama_detect(self, image_path)

# returns image_path in danilav1 root with cut_rama 
    def rama_cut(self, image_path)

# returns image-path of cut rama with drawn text areas
    def text_detect_cut(self, image_path)

# returns image-path of image with drawn text areas
    def text_detect_cut(self, image_path)

# scripts illustrates methods using
    demo_1
    demo_2
    demo_3
    demo_4
    demo_5
    
# to start work you should 
    add directory yolo
    cd yolo/
    git clone https://github.com/ultralytics/yolov5.git

# you should paste directory models just in root
    https://disk.yandex.ru/client/disk/%D0%9A%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%20NUFDR0019114/%D0%A0%D0%90%D0%9C%D0%90

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Arseniy-Zhuck/danilav1",
    "name": "danila",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "rama detect machine-learning computer-vision",
    "author": "arseniy_zhuck",
    "author_email": "arseniyzhuck@mail.ru",
    "download_url": "https://files.pythonhosted.org/packages/e4/23/a79db9290d916beb1ce53714f55e42d4b1bafdb5bfebde44675fc10e43dd/danila-1.0.0.tar.gz",
    "platform": null,
    "description": "# To install project made \r\n    git clone\r\n    pip install -r requirements.txt\r\n# All user methods are in \r\n    Danila class\r\n\r\n# makes object and loads all neuro models\r\n    danila = Danila()\r\n\r\n# returns string - class of rama using CNN network\r\n    def rama_classify(self, image_path)\r\n\r\n# returns image_path in danilav1 root with drawn rectangle and text - rama and its class\r\n    def rama_detect(self, image_path)\r\n\r\n# returns image_path in danilav1 root with cut_rama \r\n    def rama_cut(self, image_path)\r\n\r\n# returns image-path of cut rama with drawn text areas\r\n    def text_detect_cut(self, image_path)\r\n\r\n# returns image-path of image with drawn text areas\r\n    def text_detect_cut(self, image_path)\r\n\r\n# scripts illustrates methods using\r\n    demo_1\r\n    demo_2\r\n    demo_3\r\n    demo_4\r\n    demo_5\r\n    \r\n# to start work you should \r\n    add directory yolo\r\n    cd yolo/\r\n    git clone https://github.com/ultralytics/yolov5.git\r\n\r\n# you should paste directory models just in root\r\n    https://disk.yandex.ru/client/disk/%D0%9A%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%20NUFDR0019114/%D0%A0%D0%90%D0%9C%D0%90\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "This is the module for detecting and classifying text on rama pictures",
    "version": "1.0.0",
    "project_urls": {
        "GitHub": "https://github.com/Arseniy-Zhuck/danilav1",
        "Homepage": "https://github.com/Arseniy-Zhuck/danilav1"
    },
    "split_keywords": [
        "rama",
        "detect",
        "machine-learning",
        "computer-vision"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f071b92c4d8adef0650b1c292b03e30c6fc87492200b4ead98f5c0d9e80fab2e",
                "md5": "137df5ed9309e2244d3bb0b8141e9683",
                "sha256": "dc43610c4f654cf403d48e904198c93dd8c17ae2d420d6bab1986f9faa85064d"
            },
            "downloads": -1,
            "filename": "danila-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "137df5ed9309e2244d3bb0b8141e9683",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 2541,
            "upload_time": "2024-04-15T06:07:22",
            "upload_time_iso_8601": "2024-04-15T06:07:22.416088Z",
            "url": "https://files.pythonhosted.org/packages/f0/71/b92c4d8adef0650b1c292b03e30c6fc87492200b4ead98f5c0d9e80fab2e/danila-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e423a79db9290d916beb1ce53714f55e42d4b1bafdb5bfebde44675fc10e43dd",
                "md5": "af19e3aeaee6f36207ba399b85e76334",
                "sha256": "d69ffd04a23ba6852f0e6fa43a15d2c45f90d24a41a5da424ddd9ae313951f7a"
            },
            "downloads": -1,
            "filename": "danila-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "af19e3aeaee6f36207ba399b85e76334",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 3370,
            "upload_time": "2024-04-15T06:07:24",
            "upload_time_iso_8601": "2024-04-15T06:07:24.928853Z",
            "url": "https://files.pythonhosted.org/packages/e4/23/a79db9290d916beb1ce53714f55e42d4b1bafdb5bfebde44675fc10e43dd/danila-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-15 06:07:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Arseniy-Zhuck",
    "github_project": "danilav1",
    "github_not_found": true,
    "lcname": "danila"
}
        
Elapsed time: 5.00817s