danila-lib


Namedanila-lib JSON
Version 3.1.0 PyPI version JSON
download
home_pagehttps://github.com/Arseniy-Zhuck/danila_lib
SummaryThis is the module for detecting and classifying text on rama pictures
upload_time2024-10-11 14:07:51
maintainerNone
docs_urlNone
authorarseniy_zhuck
requires_python>=3.6
licenseNone
keywords rama detect machine-learning computer-vision
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # danila_lib v1.3.7
 python library for Danila

# To install project made 
    pip install danila-lib


# To use in your project 
    from danila.danila import Danila

# All use methods are in 
    class Danila

# main method returns dict {'number', 'prod', 'year'} for openCV rama img or 'no_rama'
    def text_recognize(self, img):

# steps for algorythm

# returns string - class of rama, img - openCV frame
    def rama_classify(self, img):

# returns openCV frame with rama from openCV frame
    def rama_detect(self, img):

# returns openCV image with cut_rama
    def rama_cut(self, img):

# returns openCV cut rama with drawn text areas
    def text_detect_cut(self, img):

# returns openCV img with drawn text areas
    def text_detect(self, img):

# in package data/neuro there is module Rama_classify_class
    class Rama_classify_class

# reads CNN taught model and includes it in class example
    def __init__():

# makes grey NumPy Array(1,512,512) of doubles[0..1] from openCV image
    def prepare_img(img : openCV frame): NumPy Array(1,512,512)[0..1]

# classify openCV img with CNN, returns list with double[0..1] values 
    def work_img(img : openCV frame): Double[0..1] list

# classify openCV img with CNN, returns Class_im
    def classify(img : openCV frame): Class_im

# in package data/neuro there is module Rama_detect_class
    class Rama_detect_class
# reads yolov5 taught model from yandex-disk and includes it in class example
    def __init__(self, model_path, model_name, yolo_path):
# получить JSON с результатами yolo
    def work_img(self, img_path):
# получить координаты прямоугольника с рамой
    def rama_detect(self, img_path):

# in package data/neuro there is module Rama_text_detect_class
    class Rama_text_detect_class

# reads yolov5 taught model from yandex-disk and includes it in class example
    def __init__(self, model_path, model_name, yolo_path):

# find text areas on img from img_path with yolov5, returns yolojson
    def work_img(self, img_path):

# find text areas on img from img_path with yolov5, returns dict with rects for each text class
    def text_detect(self, img_path):

# draw img_text_areas on img, returns opencv img
    def draw_text_areas_in_opencv(self, image_text_areas, img):

# in package data/neuro there is module Letters_recognize
    class Letters_recognize:

# main_method takes all image_text_areas from image_rama_cut and recognize text 
    def work_image_cut(self, image_text_areas, image_rama_cut, number_length, prod_length, year_length):

# read CNN model from yandex and put into object
    def __init__(self):

# cut text_areas imgs for each Rect from rect_array returns openCv imgs list
    def make_cuts(self, img_rama_cut, rect_array):

# for every text_class recognize text from all areas of text_class, length is depends on class and prod, returns string 
    def work_image_cuts(self, number_image_cuts, length):

# recognize one word of given length from one img, returns str
    def work_img_word(self, image_number, letter_number):

# prepare img of one letter for CNN, returns np_array(1,28,28,1) of Double[0..1]
    def prepare_img_letter(self, image_letter):

# recognize img of one letter with CNN, returns list[10] of p
    def work_img_letter(self, image_initial):

# recognize img of one letter with CNN, returns letter in str
    def classify_letter(self, image_letter):

# in package data/result Rect module for rectangle operations
# прочитать из json результата йоло
    @staticmethod
    def get_rect_from_yolo_json(yolo_json):
# makes Rect object from xmin, xmax, ymin, ymax
    def __init__(self, xmin=0, xmax=0, ymin=0, ymax=0):
# Найти IOU между этим прямоугольником и другим, данным в объекте
    def IoU(self, rect):
# makes string from object
    def __str__(self):

# find intersection square between object and other rectangle
    def intersection(self, rect):
# find union RECT between object and other rectangle
    def union(self, rect):
# in package data/result Class_im
    class Class_im(Enum):
        rama_no_spring = 0
        rama_spring = 1

# in package data/result class Text_area
    def __init__(self, dict_text_area):
        self.class_im = Class_text(dict_text_area['class'])
        self.rect = Rect(...)

# in package data/result class image_text_areas
# class contains dict with Rects list for each text_class
    class Image_text_areas:

# makes dict {Class_text.number : [], Class_text.prod : [], Class_text.text : [], Class_text.year : []} 
    def __init__(self):

# add text area to dict
    def add_area(self, text_area):

# add list of text areas
    def fill_in_with_areas(self, areas):

# delete all cases in which two areas are intersected
    def correct_intersections(self):

# changes Rects coordinates from cut_img to whole_img from rama Rect
    def explore_to_whole_image(self, rama_rect):

# exapmles of using you can find 
https://github.com/Arseniy-Zhuck/danila_lib_demo

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Arseniy-Zhuck/danila_lib",
    "name": "danila-lib",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "rama detect machine-learning computer-vision",
    "author": "arseniy_zhuck",
    "author_email": "arseniyzhuck@mail.ru",
    "download_url": "https://files.pythonhosted.org/packages/70/f4/ee4891be164a9d918973f5a5ebc57369fed5e09ab219b33e25ec118ebf67/danila_lib-3.1.0.tar.gz",
    "platform": null,
    "description": "# danila_lib v1.3.7\r\n python library for Danila\r\n\r\n# To install project made \r\n    pip install danila-lib\r\n\r\n\r\n# To use in your project \r\n    from danila.danila import Danila\r\n\r\n# All use methods are in \r\n    class Danila\r\n\r\n# main method returns dict {'number', 'prod', 'year'} for openCV rama img or 'no_rama'\r\n    def text_recognize(self, img):\r\n\r\n# steps for algorythm\r\n\r\n# returns string - class of rama, img - openCV frame\r\n    def rama_classify(self, img):\r\n\r\n# returns openCV frame with rama from openCV frame\r\n    def rama_detect(self, img):\r\n\r\n# returns openCV image with cut_rama\r\n    def rama_cut(self, img):\r\n\r\n# returns openCV cut rama with drawn text areas\r\n    def text_detect_cut(self, img):\r\n\r\n# returns openCV img with drawn text areas\r\n    def text_detect(self, img):\r\n\r\n# in package data/neuro there is module Rama_classify_class\r\n    class Rama_classify_class\r\n\r\n# reads CNN taught model and includes it in class example\r\n    def __init__():\r\n\r\n# makes grey NumPy Array(1,512,512) of doubles[0..1] from openCV image\r\n    def prepare_img(img : openCV frame): NumPy Array(1,512,512)[0..1]\r\n\r\n# classify openCV img with CNN, returns list with double[0..1] values \r\n    def work_img(img : openCV frame): Double[0..1] list\r\n\r\n# classify openCV img with CNN, returns Class_im\r\n    def classify(img : openCV frame): Class_im\r\n\r\n# in package data/neuro there is module Rama_detect_class\r\n    class Rama_detect_class\r\n# reads yolov5 taught model from yandex-disk and includes it in class example\r\n    def __init__(self, model_path, model_name, yolo_path):\r\n# \u0420\u0457\u0420\u0455\u0420\u00bb\u0421\u0453\u0421\u2021\u0420\u0451\u0421\u201a\u0421\u040a JSON \u0421\u0403 \u0421\u0402\u0420\u00b5\u0420\u00b7\u0421\u0453\u0420\u00bb\u0421\u040a\u0421\u201a\u0420\u00b0\u0421\u201a\u0420\u00b0\u0420\u0458\u0420\u0451 yolo\r\n    def work_img(self, img_path):\r\n# \u0420\u0457\u0420\u0455\u0420\u00bb\u0421\u0453\u0421\u2021\u0420\u0451\u0421\u201a\u0421\u040a \u0420\u0454\u0420\u0455\u0420\u0455\u0421\u0402\u0420\u0491\u0420\u0451\u0420\u0405\u0420\u00b0\u0421\u201a\u0421\u2039 \u0420\u0457\u0421\u0402\u0421\u040f\u0420\u0458\u0420\u0455\u0421\u0453\u0420\u0456\u0420\u0455\u0420\u00bb\u0421\u040a\u0420\u0405\u0420\u0451\u0420\u0454\u0420\u00b0 \u0421\u0403 \u0421\u0402\u0420\u00b0\u0420\u0458\u0420\u0455\u0420\u2116\r\n    def rama_detect(self, img_path):\r\n\r\n# in package data/neuro there is module Rama_text_detect_class\r\n    class Rama_text_detect_class\r\n\r\n# reads yolov5 taught model from yandex-disk and includes it in class example\r\n    def __init__(self, model_path, model_name, yolo_path):\r\n\r\n# find text areas on img from img_path with yolov5, returns yolojson\r\n    def work_img(self, img_path):\r\n\r\n# find text areas on img from img_path with yolov5, returns dict with rects for each text class\r\n    def text_detect(self, img_path):\r\n\r\n# draw img_text_areas on img, returns opencv img\r\n    def draw_text_areas_in_opencv(self, image_text_areas, img):\r\n\r\n# in package data/neuro there is module Letters_recognize\r\n    class Letters_recognize:\r\n\r\n# main_method takes all image_text_areas from image_rama_cut and recognize text \r\n    def work_image_cut(self, image_text_areas, image_rama_cut, number_length, prod_length, year_length):\r\n\r\n# read CNN model from yandex and put into object\r\n    def __init__(self):\r\n\r\n# cut text_areas imgs for each Rect from rect_array returns openCv imgs list\r\n    def make_cuts(self, img_rama_cut, rect_array):\r\n\r\n# for every text_class recognize text from all areas of text_class, length is depends on class and prod, returns string \r\n    def work_image_cuts(self, number_image_cuts, length):\r\n\r\n# recognize one word of given length from one img, returns str\r\n    def work_img_word(self, image_number, letter_number):\r\n\r\n# prepare img of one letter for CNN, returns np_array(1,28,28,1) of Double[0..1]\r\n    def prepare_img_letter(self, image_letter):\r\n\r\n# recognize img of one letter with CNN, returns list[10] of p\r\n    def work_img_letter(self, image_initial):\r\n\r\n# recognize img of one letter with CNN, returns letter in str\r\n    def classify_letter(self, image_letter):\r\n\r\n# in package data/result Rect module for rectangle operations\r\n# \u0420\u0457\u0421\u0402\u0420\u0455\u0421\u2021\u0420\u0451\u0421\u201a\u0420\u00b0\u0421\u201a\u0421\u040a \u0420\u0451\u0420\u00b7 json \u0421\u0402\u0420\u00b5\u0420\u00b7\u0421\u0453\u0420\u00bb\u0421\u040a\u0421\u201a\u0420\u00b0\u0421\u201a\u0420\u00b0 \u0420\u2116\u0420\u0455\u0420\u00bb\u0420\u0455\r\n    @staticmethod\r\n    def get_rect_from_yolo_json(yolo_json):\r\n# makes Rect object from xmin, xmax, ymin, ymax\r\n    def __init__(self, xmin=0, xmax=0, ymin=0, ymax=0):\r\n# \u0420\u045c\u0420\u00b0\u0420\u2116\u0421\u201a\u0420\u0451 IOU \u0420\u0458\u0420\u00b5\u0420\u00b6\u0420\u0491\u0421\u0453 \u0421\u040c\u0421\u201a\u0420\u0451\u0420\u0458 \u0420\u0457\u0421\u0402\u0421\u040f\u0420\u0458\u0420\u0455\u0421\u0453\u0420\u0456\u0420\u0455\u0420\u00bb\u0421\u040a\u0420\u0405\u0420\u0451\u0420\u0454\u0420\u0455\u0420\u0458 \u0420\u0451 \u0420\u0491\u0421\u0402\u0421\u0453\u0420\u0456\u0420\u0451\u0420\u0458, \u0420\u0491\u0420\u00b0\u0420\u0405\u0420\u0405\u0421\u2039\u0420\u0458 \u0420\u0406 \u0420\u0455\u0420\u00b1\u0421\u0409\u0420\u00b5\u0420\u0454\u0421\u201a\u0420\u00b5\r\n    def IoU(self, rect):\r\n# makes string from object\r\n    def __str__(self):\r\n\r\n# find intersection square between object and other rectangle\r\n    def intersection(self, rect):\r\n# find union RECT between object and other rectangle\r\n    def union(self, rect):\r\n# in package data/result Class_im\r\n    class Class_im(Enum):\r\n        rama_no_spring = 0\r\n        rama_spring = 1\r\n\r\n# in package data/result class Text_area\r\n    def __init__(self, dict_text_area):\r\n        self.class_im = Class_text(dict_text_area['class'])\r\n        self.rect = Rect(...)\r\n\r\n# in package data/result class image_text_areas\r\n# class contains dict with Rects list for each text_class\r\n    class Image_text_areas:\r\n\r\n# makes dict {Class_text.number : [], Class_text.prod : [], Class_text.text : [], Class_text.year : []} \r\n    def __init__(self):\r\n\r\n# add text area to dict\r\n    def add_area(self, text_area):\r\n\r\n# add list of text areas\r\n    def fill_in_with_areas(self, areas):\r\n\r\n# delete all cases in which two areas are intersected\r\n    def correct_intersections(self):\r\n\r\n# changes Rects coordinates from cut_img to whole_img from rama Rect\r\n    def explore_to_whole_image(self, rama_rect):\r\n\r\n# exapmles of using you can find \r\nhttps://github.com/Arseniy-Zhuck/danila_lib_demo\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "This is the module for detecting and classifying text on rama pictures",
    "version": "3.1.0",
    "project_urls": {
        "GitHub": "https://github.com/Arseniy-Zhuck/danila_lib",
        "Homepage": "https://github.com/Arseniy-Zhuck/danila_lib"
    },
    "split_keywords": [
        "rama",
        "detect",
        "machine-learning",
        "computer-vision"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "99eb98be0916ba58df9a2fd6d19816718a6a6883b4612922abd86747feadfce2",
                "md5": "d35783df120b2d5e92d3a8f69af55466",
                "sha256": "14d8326ea3c2dd79c6e8129c68f12419ccb80327b4e697854f46ea77eb17eeb2"
            },
            "downloads": -1,
            "filename": "danila_lib-3.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d35783df120b2d5e92d3a8f69af55466",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 152259,
            "upload_time": "2024-10-11T14:07:49",
            "upload_time_iso_8601": "2024-10-11T14:07:49.018791Z",
            "url": "https://files.pythonhosted.org/packages/99/eb/98be0916ba58df9a2fd6d19816718a6a6883b4612922abd86747feadfce2/danila_lib-3.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "70f4ee4891be164a9d918973f5a5ebc57369fed5e09ab219b33e25ec118ebf67",
                "md5": "f6f6348e4e0e7e40cacd1ec7499cad2f",
                "sha256": "cc783057d10beb71f576d4f75190e6fb1624ffff5e8049dce51689b13bab14d4"
            },
            "downloads": -1,
            "filename": "danila_lib-3.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f6f6348e4e0e7e40cacd1ec7499cad2f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 46849,
            "upload_time": "2024-10-11T14:07:51",
            "upload_time_iso_8601": "2024-10-11T14:07:51.522322Z",
            "url": "https://files.pythonhosted.org/packages/70/f4/ee4891be164a9d918973f5a5ebc57369fed5e09ab219b33e25ec118ebf67/danila_lib-3.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-11 14:07:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Arseniy-Zhuck",
    "github_project": "danila_lib",
    "github_not_found": true,
    "lcname": "danila-lib"
}
        
Elapsed time: 0.30631s