danteai


Namedanteai JSON
Version 1.1 PyPI version JSON
download
home_pageNone
SummaryNone
upload_time2024-12-24 12:31:00
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # danteai

Danteai is a convenient Python package for training your own text-based AI model and using it in practice to generate responses based on specified parameters. The package is fully tailored for the tasks of Dante (an application for article generation). If you need to modify the default settings, pay attention to the `minions.py`, `create_or_train.py`, and `get_generated_article.py` files.

## Installation

Install the package using pip:

```bash
pip install danteai
```

## Example Usage

```bash
echo MODEL_STORE_DIR='./model' > .env
export $(cat .env | xargs)
```

```python
from danteai import (
    create_or_train,
    get_generated_article,
)

"""
    data = [
        {
            'tags': [],
            'text_example: '',
            'short_news_description: '',
            'response': ''
        },
        ...
    ]
"""

create_or_train_response = create_or_train(
    data=[],
    create_new_model=True
)
print(create_or_train_response)
# if only training, using False for 'create_new_model'

generated_article = get_generated_article(
    tags=[],
    text_example='',
    short_news_description=''
)
print(generated_article)
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "danteai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/32/a1/3e0a53062411e08c4f0d65ff06ab18ddbcda92b223b7cc4ec2ae3a01ec18/danteai-1.1.tar.gz",
    "platform": null,
    "description": "# danteai\n\nDanteai is a convenient Python package for training your own text-based AI model and using it in practice to generate responses based on specified parameters. The package is fully tailored for the tasks of Dante (an application for article generation). If you need to modify the default settings, pay attention to the `minions.py`, `create_or_train.py`, and `get_generated_article.py` files.\n\n## Installation\n\nInstall the package using pip:\n\n```bash\npip install danteai\n```\n\n## Example Usage\n\n```bash\necho MODEL_STORE_DIR='./model' > .env\nexport $(cat .env | xargs)\n```\n\n```python\nfrom danteai import (\n    create_or_train,\n    get_generated_article,\n)\n\n\"\"\"\n    data = [\n        {\n            'tags': [],\n            'text_example: '',\n            'short_news_description: '',\n            'response': ''\n        },\n        ...\n    ]\n\"\"\"\n\ncreate_or_train_response = create_or_train(\n    data=[],\n    create_new_model=True\n)\nprint(create_or_train_response)\n# if only training, using False for 'create_new_model'\n\ngenerated_article = get_generated_article(\n    tags=[],\n    text_example='',\n    short_news_description=''\n)\nprint(generated_article)\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": null,
    "version": "1.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3d02b5a5caf17ae62135e2efe41c83a0572d9b5ff9b12c278b3c5085484432c5",
                "md5": "879caaced17df2415e390fab42a15f76",
                "sha256": "2ddf15d11e3c797e1da09c41146a3473f7b93abfe424c9c2bdca2de9a1e8ed7d"
            },
            "downloads": -1,
            "filename": "danteai-1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "879caaced17df2415e390fab42a15f76",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5327,
            "upload_time": "2024-12-24T12:30:58",
            "upload_time_iso_8601": "2024-12-24T12:30:58.206583Z",
            "url": "https://files.pythonhosted.org/packages/3d/02/b5a5caf17ae62135e2efe41c83a0572d9b5ff9b12c278b3c5085484432c5/danteai-1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "32a13e0a53062411e08c4f0d65ff06ab18ddbcda92b223b7cc4ec2ae3a01ec18",
                "md5": "02738421e1c7479b41045cf192f83989",
                "sha256": "e0e61d796198836760fa7f2c1c3eb8d7ccf65b363f8d708b478603a9fd5b4efb"
            },
            "downloads": -1,
            "filename": "danteai-1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "02738421e1c7479b41045cf192f83989",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3786,
            "upload_time": "2024-12-24T12:31:00",
            "upload_time_iso_8601": "2024-12-24T12:31:00.713394Z",
            "url": "https://files.pythonhosted.org/packages/32/a1/3e0a53062411e08c4f0d65ff06ab18ddbcda92b223b7cc4ec2ae3a01ec18/danteai-1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-24 12:31:00",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "danteai"
}
        
Elapsed time: 0.88613s