data-prep-toolkit


Namedata-prep-toolkit JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummaryData Preparation Toolkit Library
upload_time2024-09-25 20:01:07
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseApache-2.0
keywords data data preprocessing data preparation llm generative ai fine-tuning llmapps
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Data Processing Library
This provides a python framework for developing _transforms_
on data stored in files - currently parquet files are supported -
and running them in a [ray](https://www.ray.io/) cluster.
Data files may be stored in the local file system or  COS/S3.
For more details see the [documentation](../doc/overview.md).

### Virtual Environment
The project uses `pyproject.toml` and a Makefile for operations.
To do development you should establish the virtual environment
```shell
make venv
```
and then either activate
```shell
source venv/bin/activate
```
or set up your IDE to use the venv directory when developing in this project

## Library Artifact Build and Publish
To test, build and publish the library 
```shell
make test build publish
```

To up the version number, edit the Makefile to change VERSION and rerun
the above.  This will require committing both the `Makefile` and the
autotmatically updated `pyproject.toml` file.




            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "data-prep-toolkit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "data, data preprocessing, data preparation, llm, generative, ai, fine-tuning, llmapps",
    "author": null,
    "author_email": "David Wood <dawood@us.ibm.com>, Boris Lublinsky <blublinsky@ibm.com>",
    "download_url": "https://files.pythonhosted.org/packages/df/18/47f09ca64c116ec2c2ea1b14d9ece1d483bfd708e76f9c3ef6a92b1a6add/data_prep_toolkit-0.2.1.tar.gz",
    "platform": null,
    "description": "# Data Processing Library\nThis provides a python framework for developing _transforms_\non data stored in files - currently parquet files are supported -\nand running them in a [ray](https://www.ray.io/) cluster.\nData files may be stored in the local file system or  COS/S3.\nFor more details see the [documentation](../doc/overview.md).\n\n### Virtual Environment\nThe project uses `pyproject.toml` and a Makefile for operations.\nTo do development you should establish the virtual environment\n```shell\nmake venv\n```\nand then either activate\n```shell\nsource venv/bin/activate\n```\nor set up your IDE to use the venv directory when developing in this project\n\n## Library Artifact Build and Publish\nTo test, build and publish the library \n```shell\nmake test build publish\n```\n\nTo up the version number, edit the Makefile to change VERSION and rerun\nthe above.  This will require committing both the `Makefile` and the\nautotmatically updated `pyproject.toml` file.\n\n\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Data Preparation Toolkit Library",
    "version": "0.2.1",
    "project_urls": null,
    "split_keywords": [
        "data",
        " data preprocessing",
        " data preparation",
        " llm",
        " generative",
        " ai",
        " fine-tuning",
        " llmapps"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6851848bfbc0c165d20a6a01145948c92151eee1fd7f596214ec119bbab98d26",
                "md5": "84eeb569598a708c3e89c7271e487607",
                "sha256": "b010abd5c19f63a37d6e552211c3774e6ce811c67a9eada7f6e6d2b4f9d35495"
            },
            "downloads": -1,
            "filename": "data_prep_toolkit-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "84eeb569598a708c3e89c7271e487607",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 73039,
            "upload_time": "2024-09-25T20:01:04",
            "upload_time_iso_8601": "2024-09-25T20:01:04.851107Z",
            "url": "https://files.pythonhosted.org/packages/68/51/848bfbc0c165d20a6a01145948c92151eee1fd7f596214ec119bbab98d26/data_prep_toolkit-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "df1847f09ca64c116ec2c2ea1b14d9ece1d483bfd708e76f9c3ef6a92b1a6add",
                "md5": "c19e34d3d9f667bbcddfb9a41e24e53e",
                "sha256": "7370fb618944a9ede04552f6e46a7bd36881ad164cad843a20100315a5fdb536"
            },
            "downloads": -1,
            "filename": "data_prep_toolkit-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "c19e34d3d9f667bbcddfb9a41e24e53e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 125605,
            "upload_time": "2024-09-25T20:01:07",
            "upload_time_iso_8601": "2024-09-25T20:01:07.061457Z",
            "url": "https://files.pythonhosted.org/packages/df/18/47f09ca64c116ec2c2ea1b14d9ece1d483bfd708e76f9c3ef6a92b1a6add/data_prep_toolkit-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-25 20:01:07",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "data-prep-toolkit"
}
        
Elapsed time: 0.41793s