data-prep-toolkit-ray


Namedata-prep-toolkit-ray JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummaryData Preparation Toolkit Library for Ray
upload_time2024-09-25 20:33:24
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseApache-2.0
keywords data data preprocessing data preparation llm generative ai fine-tuning llmapps
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Data Processing Library
This provides a python framework for developing _transforms_
on data stored in files - currently parquet files are supported -
and running them in a [ray](https://www.ray.io/) cluster.
Data files may be stored in the local file system or  COS/S3.
For more details see the [documentation](../doc/overview.md).

### Virtual Environment
The project uses `pyproject.toml` and a Makefile for operations.
To do development you should establish the virtual environment
```shell
cd data-processing-lib/ray/
make venv
```
and then either activate
```shell
source venv/bin/activate
```
or set up your IDE to use the venv directory when developing in this project

## Library Artifact Build and Publish
To test, build and publish the library 
```shell
make test build publish
```
To up the version number, edit the Makefile to change VERSION and rerun
the above.  This will require committing both the `Makefile` and the
autotmatically updated `pyproject.toml` file.



            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "data-prep-toolkit-ray",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "data, data preprocessing, data preparation, llm, generative, ai, fine-tuning, llmapps",
    "author": null,
    "author_email": "David Wood <dawood@us.ibm.com>, Boris Lublinsky <blublinsky@ibm.com>",
    "download_url": "https://files.pythonhosted.org/packages/d4/97/5c7205b4943e0b78d8da546f4495adc9c055951cc18db578fd64698f9f0a/data_prep_toolkit_ray-0.2.1.tar.gz",
    "platform": null,
    "description": "# Data Processing Library\nThis provides a python framework for developing _transforms_\non data stored in files - currently parquet files are supported -\nand running them in a [ray](https://www.ray.io/) cluster.\nData files may be stored in the local file system or  COS/S3.\nFor more details see the [documentation](../doc/overview.md).\n\n### Virtual Environment\nThe project uses `pyproject.toml` and a Makefile for operations.\nTo do development you should establish the virtual environment\n```shell\ncd data-processing-lib/ray/\nmake venv\n```\nand then either activate\n```shell\nsource venv/bin/activate\n```\nor set up your IDE to use the venv directory when developing in this project\n\n## Library Artifact Build and Publish\nTo test, build and publish the library \n```shell\nmake test build publish\n```\nTo up the version number, edit the Makefile to change VERSION and rerun\nthe above.  This will require committing both the `Makefile` and the\nautotmatically updated `pyproject.toml` file.\n\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Data Preparation Toolkit Library for Ray",
    "version": "0.2.1",
    "project_urls": null,
    "split_keywords": [
        "data",
        " data preprocessing",
        " data preparation",
        " llm",
        " generative",
        " ai",
        " fine-tuning",
        " llmapps"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "55668be0e9b31583ac4058522168617402f7db915204e75069d9c86e0b4a16e3",
                "md5": "64fad76e0be4e9f65b68ab0162a61bcb",
                "sha256": "d56fb04afa6ed7258193ff0b625d43245a54b6a859bfa8f5751fa6927cdfb2b9"
            },
            "downloads": -1,
            "filename": "data_prep_toolkit_ray-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "64fad76e0be4e9f65b68ab0162a61bcb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 18635,
            "upload_time": "2024-09-25T20:33:19",
            "upload_time_iso_8601": "2024-09-25T20:33:19.532725Z",
            "url": "https://files.pythonhosted.org/packages/55/66/8be0e9b31583ac4058522168617402f7db915204e75069d9c86e0b4a16e3/data_prep_toolkit_ray-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d4975c7205b4943e0b78d8da546f4495adc9c055951cc18db578fd64698f9f0a",
                "md5": "553d1142cc32201dfe570f2c50c29494",
                "sha256": "b4324ddad70f761567e1807f9d8c4bc6f3735638ccc53fb34dfc437748f183c2"
            },
            "downloads": -1,
            "filename": "data_prep_toolkit_ray-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "553d1142cc32201dfe570f2c50c29494",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 86334,
            "upload_time": "2024-09-25T20:33:24",
            "upload_time_iso_8601": "2024-09-25T20:33:24.079623Z",
            "url": "https://files.pythonhosted.org/packages/d4/97/5c7205b4943e0b78d8da546f4495adc9c055951cc18db578fd64698f9f0a/data_prep_toolkit_ray-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-25 20:33:24",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "data-prep-toolkit-ray"
}
        
Elapsed time: 0.82868s