# data_serialize
This library allows reading and writing binary to string
## Installation
```pip3 install data_serialize```
## serialize and deserialize
```python
#
import data_serialize
import numpy as np
def test_feature():
val1 = data_serialize.Int64List(value=[1, 2, 3] * 20)
val2 = data_serialize.FloatList(value=[1, 2, 3] * 20)
val3 = data_serialize.BytesList(value=[b'The china', b'boy'])
featrue = data_serialize.Features(feature=
{
"item_0": data_serialize.Feature(int64_list=val1),
"item_1": data_serialize.Feature(float_list=val2),
"item_2": data_serialize.Feature(bytes_list=val3)
}
)
example = data_serialize.Example(features=featrue)
# 序列化
serialize = example.SerializeToString()
print(serialize)
# 反序列化
example = data_serialize.Example()
example.ParseFromString(serialize)
print(example)
def test_numpyobject():
a = np.random.randint(0, 21128, size=(10,), dtype=np.int64)
b = np.random.rand(3, 4)
c = np.asarray(b'The china')
val1 = data_serialize.NumpyObject(
header='',
dtype=str(a.dtype),
shape=list(a.shape),
int64=a.reshape((-1,)).tolist(),
)
val2 = data_serialize.NumpyObject(
header='',
dtype=str(b.dtype),
shape=list(b.shape),
float64=b.reshape((-1,)).tolist(),
)
val3 = data_serialize.NumpyObject(
header='',
dtype=str(c.dtype),
shape=list(c.shape),
bytes=c.tobytes(),
)
example = data_serialize.NumpyObjectMap(numpyobjects={
"item_0": val1,
"item_1": val2,
"item_2": val3}
)
# 序列化
serialize = example.SerializeToString()
print(serialize)
# 反序列化
example = data_serialize.NumpyObjectMap()
example.ParseFromString(serialize)
print(example)
test_feature()
test_numpyobject()
```
Raw data
{
"_id": null,
"home_page": "https://github.com/ssbuild/fastdatasets",
"name": "data-serialize",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "data_serialize,serialize,deserialize",
"author": "ssbuild",
"author_email": "9727464@qq.com",
"download_url": "",
"platform": null,
"description": "# data_serialize\n\nThis library allows reading and writing binary to string \n\n## Installation\n\n```pip3 install data_serialize```\n\n\n## serialize and deserialize\n\n```python\n#\nimport data_serialize\nimport numpy as np\n\n\ndef test_feature():\n val1 = data_serialize.Int64List(value=[1, 2, 3] * 20)\n val2 = data_serialize.FloatList(value=[1, 2, 3] * 20)\n val3 = data_serialize.BytesList(value=[b'The china', b'boy'])\n\n featrue = data_serialize.Features(feature=\n {\n \"item_0\": data_serialize.Feature(int64_list=val1),\n \"item_1\": data_serialize.Feature(float_list=val2),\n \"item_2\": data_serialize.Feature(bytes_list=val3)\n }\n )\n\n example = data_serialize.Example(features=featrue)\n\n # \u5e8f\u5217\u5316\n serialize = example.SerializeToString()\n print(serialize)\n\n # \u53cd\u5e8f\u5217\u5316\n example = data_serialize.Example()\n example.ParseFromString(serialize)\n print(example)\n\n\ndef test_numpyobject():\n a = np.random.randint(0, 21128, size=(10,), dtype=np.int64)\n b = np.random.rand(3, 4)\n c = np.asarray(b'The china')\n\n val1 = data_serialize.NumpyObject(\n header='',\n dtype=str(a.dtype),\n shape=list(a.shape),\n int64=a.reshape((-1,)).tolist(),\n )\n val2 = data_serialize.NumpyObject(\n header='',\n dtype=str(b.dtype),\n shape=list(b.shape),\n float64=b.reshape((-1,)).tolist(),\n )\n val3 = data_serialize.NumpyObject(\n header='',\n dtype=str(c.dtype),\n shape=list(c.shape),\n bytes=c.tobytes(),\n )\n\n example = data_serialize.NumpyObjectMap(numpyobjects={\n \"item_0\": val1,\n \"item_1\": val2,\n \"item_2\": val3}\n )\n # \u5e8f\u5217\u5316\n serialize = example.SerializeToString()\n print(serialize)\n\n # \u53cd\u5e8f\u5217\u5316\n example = data_serialize.NumpyObjectMap()\n example.ParseFromString(serialize)\n print(example)\n\n\ntest_feature()\n\ntest_numpyobject()\n\n\n```\n\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "data serialize",
"version": "0.2.2",
"project_urls": {
"Homepage": "https://github.com/ssbuild/fastdatasets"
},
"split_keywords": [
"data_serialize",
"serialize",
"deserialize"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d049cc5477783f464563093fab28f73e647b1a78d5b5bc472fc7b69a1cf2f991",
"md5": "ae6fe99ab53bc6cafeec13ceb68abbe8",
"sha256": "92483125fb996d656441e1c33a80b13979d984b4c9749d2a3465f2ec13262a06"
},
"downloads": -1,
"filename": "data_serialize-0.2.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ae6fe99ab53bc6cafeec13ceb68abbe8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 12518,
"upload_time": "2023-07-31T05:12:31",
"upload_time_iso_8601": "2023-07-31T05:12:31.604405Z",
"url": "https://files.pythonhosted.org/packages/d0/49/cc5477783f464563093fab28f73e647b1a78d5b5bc472fc7b69a1cf2f991/data_serialize-0.2.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-31 05:12:31",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ssbuild",
"github_project": "fastdatasets",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "data-serialize"
}