databand


Namedataband JSON
Version 1.0.27.2 PyPI version JSON
download
home_pagehttps://github.com/databand-ai/dbnd
SummaryMachine Learning Orchestration
upload_time2024-10-31 16:10:28
maintainerEvgeny Shulman
docs_urlNone
authorEvgeny Shulman
requires_pythonNone
licenseNone
keywords orchestration data machinelearning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![pipeline status](https://gitlab.com/databand-ai/dbnd/badges/master/pipeline.svg)](https://gitlab.com/databand-ai/dbnd/pipelines)

![PyPI - Downloads](https://img.shields.io/pypi/dm/dbnd) ![PyPI](https://img.shields.io/pypi/v/dbnd)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/dbnd) ![PyPI - License](https://img.shields.io/pypi/l/dbnd)
![Code style: ](https://img.shields.io/badge/code%20style-black-000000.svg)

# DBND

DBND an open source framework for building and tracking data pipelines. DBND is used for processes ranging from data ingestion, preparation, machine learning model training and production.

DBND includes a Python library, set of APIs, and CLI that enables you to collect metadata from your workflows, create a system of record for runs, and easily orchestrate complex processes.

DBND simplifies the process of building and running data pipelines
from dbnd import task

```python
from dbnd import task

@task
def say_hello(name: str = "databand.ai") -> str:
    value = "Hello %s!" % name
    return value
```

And makes it easy to track your critical pipeline metadata

```python
from dbnd import log_metric, log_dataframe

log_dataframe("my_dataset", my_dataset)
log_metric("r2", r2)
```

## Getting Started

See our [documentation](https://www.ibm.com/docs/en/dobd) with examples and quickstart guides to get up and running with DBND.

## The Latest and Greatest

For using DBND, we recommend that you work with a virtual environment like [Virtualenv](https://virtualenv.pypa.io/en/latest/) or [Conda](https://docs.conda.io/en/latest/). Update to the latest and greatest:

```shell script
pip install dbnd
```

If you would like access to our latest features, or have any questions, feedback, or contributions we would love to here from you! Get in touch through contact@databand.ai

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/databand-ai/dbnd",
    "name": "databand",
    "maintainer": "Evgeny Shulman",
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": "evgeny.shulman@databand.ai",
    "keywords": "orchestration, data, machinelearning",
    "author": "Evgeny Shulman",
    "author_email": "evgeny.shulman@databand.ai",
    "download_url": "https://files.pythonhosted.org/packages/c1/85/4b12bc5ece0855d6b58ed6dbc5cd978d52be27ce6ec0170435a9901918ea/databand-1.0.27.2.tar.gz",
    "platform": "any",
    "description": "[![pipeline status](https://gitlab.com/databand-ai/dbnd/badges/master/pipeline.svg)](https://gitlab.com/databand-ai/dbnd/pipelines)\n\n![PyPI - Downloads](https://img.shields.io/pypi/dm/dbnd) ![PyPI](https://img.shields.io/pypi/v/dbnd)\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/dbnd) ![PyPI - License](https://img.shields.io/pypi/l/dbnd)\n![Code style: ](https://img.shields.io/badge/code%20style-black-000000.svg)\n\n# DBND\n\nDBND an open source framework for building and tracking data pipelines. DBND is used for processes ranging from data ingestion, preparation, machine learning model training and production.\n\nDBND includes a Python library, set of APIs, and CLI that enables you to collect metadata from your workflows, create a system of record for runs, and easily orchestrate complex processes.\n\nDBND simplifies the process of building and running data pipelines\nfrom dbnd import task\n\n```python\nfrom dbnd import task\n\n@task\ndef say_hello(name: str = \"databand.ai\") -> str:\n    value = \"Hello %s!\" % name\n    return value\n```\n\nAnd makes it easy to track your critical pipeline metadata\n\n```python\nfrom dbnd import log_metric, log_dataframe\n\nlog_dataframe(\"my_dataset\", my_dataset)\nlog_metric(\"r2\", r2)\n```\n\n## Getting Started\n\nSee our [documentation](https://www.ibm.com/docs/en/dobd) with examples and quickstart guides to get up and running with DBND.\n\n## The Latest and Greatest\n\nFor using DBND, we recommend that you work with a virtual environment like [Virtualenv](https://virtualenv.pypa.io/en/latest/) or [Conda](https://docs.conda.io/en/latest/). Update to the latest and greatest:\n\n```shell script\npip install dbnd\n```\n\nIf you would like access to our latest features, or have any questions, feedback, or contributions we would love to here from you! Get in touch through contact@databand.ai\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Machine Learning Orchestration",
    "version": "1.0.27.2",
    "project_urls": {
        "Bug-Tracker": "https://github.com/databand-ai/dbnd/issues",
        "Documentation": "https://dbnd.readme.io/",
        "Homepage": "https://github.com/databand-ai/dbnd",
        "Source-Code": "https://github.com/databand-ai/dbnd"
    },
    "split_keywords": [
        "orchestration",
        " data",
        " machinelearning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2a34b982a32d2db63937eb71ef3b6fa9ec8f69b6292e0213ed11e0e3e51f6789",
                "md5": "109f194e5bf00a7e53ac545e683465f9",
                "sha256": "d181bfd9ae8870d60dc7d23455aeacade46ce19cc200c54202fff9095fe86dff"
            },
            "downloads": -1,
            "filename": "databand-1.0.27.2-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "109f194e5bf00a7e53ac545e683465f9",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 6720,
            "upload_time": "2024-10-31T16:09:41",
            "upload_time_iso_8601": "2024-10-31T16:09:41.582307Z",
            "url": "https://files.pythonhosted.org/packages/2a/34/b982a32d2db63937eb71ef3b6fa9ec8f69b6292e0213ed11e0e3e51f6789/databand-1.0.27.2-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c1854b12bc5ece0855d6b58ed6dbc5cd978d52be27ce6ec0170435a9901918ea",
                "md5": "b587234bb9172e1ff026d22569a0f575",
                "sha256": "25bb11bf5e6265292e50d8af494752b19c6261d20eb89715052d1401ad8a317e"
            },
            "downloads": -1,
            "filename": "databand-1.0.27.2.tar.gz",
            "has_sig": false,
            "md5_digest": "b587234bb9172e1ff026d22569a0f575",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 10701,
            "upload_time": "2024-10-31T16:10:28",
            "upload_time_iso_8601": "2024-10-31T16:10:28.051433Z",
            "url": "https://files.pythonhosted.org/packages/c1/85/4b12bc5ece0855d6b58ed6dbc5cd978d52be27ce6ec0170435a9901918ea/databand-1.0.27.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-31 16:10:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "databand-ai",
    "github_project": "dbnd",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "tox": true,
    "lcname": "databand"
}
        
Elapsed time: 0.46730s