Name | databricks-langchain JSON |
Version |
0.2.0
JSON |
| download |
home_page | None |
Summary | Support for Databricks AI support in LangChain |
upload_time | 2025-01-22 01:00:38 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | Apache-2.0 |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# 🦜🔗 Databricks LangChain Integration
The `databricks-langchain` package provides seamless integration of Databricks AI features into LangChain applications. This repository is now the central hub for all Databricks-related LangChain components, consolidating previous packages such as `langchain-databricks` and `langchain-community`.
## Installation
### From PyPI
```sh
pip install databricks-langchain
```
### From Source
```sh
pip install git+https://git@github.com/databricks/databricks-ai-bridge.git#subdirectory=integrations/langchain
```
## Key Features
- **LLMs Integration:** Use Databricks-hosted large language models (LLMs) like Llama and Mixtral through `ChatDatabricks`.
- **Vector Search:** Store and query vector representations using `DatabricksVectorSearch`.
- **Embeddings:** Generate embeddings with `DatabricksEmbeddings`.
- **Genie:** Use [Genie](https://www.databricks.com/product/ai-bi/genie) in Langchain.
## Getting Started
### Use LLMs on Databricks
```python
from databricks_langchain import ChatDatabricks
llm = ChatDatabricks(endpoint="databricks-meta-llama-3-1-70b-instruct")
```
### Use a Genie Space as an Agent (Preview)
> **Note:** Requires Genie API Private Preview. Contact your Databricks account team for enablement.
```python
from databricks_langchain.genie import GenieAgent
genie_agent = GenieAgent(
"space-id", "Genie",
description="This Genie space has access to sales data in Europe"
)
```
---
## Contribution Guide
We welcome contributions! Please see our [contribution guidelines](https://github.com/databricks/databricks-ai-bridge/tree/main/integrations/langchain) for details.
## License
This project is licensed under the [MIT License](LICENSE).
Thank you for using Databricks LangChain!
Raw data
{
"_id": null,
"home_page": null,
"name": "databricks-langchain",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Prithvi Kannan <prithvi.kannan@databricks.com>",
"download_url": null,
"platform": null,
"description": "# \ud83e\udd9c\ud83d\udd17 Databricks LangChain Integration\n\nThe `databricks-langchain` package provides seamless integration of Databricks AI features into LangChain applications. This repository is now the central hub for all Databricks-related LangChain components, consolidating previous packages such as `langchain-databricks` and `langchain-community`.\n\n## Installation\n\n### From PyPI\n```sh\npip install databricks-langchain\n```\n\n### From Source\n```sh\npip install git+https://git@github.com/databricks/databricks-ai-bridge.git#subdirectory=integrations/langchain\n```\n\n## Key Features\n\n- **LLMs Integration:** Use Databricks-hosted large language models (LLMs) like Llama and Mixtral through `ChatDatabricks`.\n- **Vector Search:** Store and query vector representations using `DatabricksVectorSearch`.\n- **Embeddings:** Generate embeddings with `DatabricksEmbeddings`.\n- **Genie:** Use [Genie](https://www.databricks.com/product/ai-bi/genie) in Langchain.\n\n## Getting Started\n\n### Use LLMs on Databricks\n```python\nfrom databricks_langchain import ChatDatabricks\n\nllm = ChatDatabricks(endpoint=\"databricks-meta-llama-3-1-70b-instruct\")\n```\n\n### Use a Genie Space as an Agent (Preview)\n> **Note:** Requires Genie API Private Preview. Contact your Databricks account team for enablement.\n\n```python\nfrom databricks_langchain.genie import GenieAgent\n\ngenie_agent = GenieAgent(\n \"space-id\", \"Genie\",\n description=\"This Genie space has access to sales data in Europe\"\n)\n```\n\n---\n\n## Contribution Guide\nWe welcome contributions! Please see our [contribution guidelines](https://github.com/databricks/databricks-ai-bridge/tree/main/integrations/langchain) for details.\n\n## License\nThis project is licensed under the [MIT License](LICENSE).\n\nThank you for using Databricks LangChain!\n\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Support for Databricks AI support in LangChain",
"version": "0.2.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a7334007493e40ee25056f89bdee8e2fb34d76b2b8403cedb0f6e4d16f46d6a0",
"md5": "6ee725cf6666a09b2500eb232e37f923",
"sha256": "2806affb25c7ae07cbc8a917ac2f96e4eb3ff34b794c82409c08ea2c5137a776"
},
"downloads": -1,
"filename": "databricks_langchain-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6ee725cf6666a09b2500eb232e37f923",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 21133,
"upload_time": "2025-01-22T01:00:38",
"upload_time_iso_8601": "2025-01-22T01:00:38.221219Z",
"url": "https://files.pythonhosted.org/packages/a7/33/4007493e40ee25056f89bdee8e2fb34d76b2b8403cedb0f6e4d16f46d6a0/databricks_langchain-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-22 01:00:38",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "databricks-langchain"
}