databricks-langchain


Namedatabricks-langchain JSON
Version 0.2.0 PyPI version JSON
download
home_pageNone
SummarySupport for Databricks AI support in LangChain
upload_time2025-01-22 01:00:38
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseApache-2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # 🦜🔗 Databricks LangChain Integration

The `databricks-langchain` package provides seamless integration of Databricks AI features into LangChain applications. This repository is now the central hub for all Databricks-related LangChain components, consolidating previous packages such as `langchain-databricks` and `langchain-community`.

## Installation

### From PyPI
```sh
pip install databricks-langchain
```

### From Source
```sh
pip install git+https://git@github.com/databricks/databricks-ai-bridge.git#subdirectory=integrations/langchain
```

## Key Features

- **LLMs Integration:** Use Databricks-hosted large language models (LLMs) like Llama and Mixtral through `ChatDatabricks`.
- **Vector Search:** Store and query vector representations using `DatabricksVectorSearch`.
- **Embeddings:** Generate embeddings with `DatabricksEmbeddings`.
- **Genie:** Use [Genie](https://www.databricks.com/product/ai-bi/genie) in Langchain.

## Getting Started

### Use LLMs on Databricks
```python
from databricks_langchain import ChatDatabricks

llm = ChatDatabricks(endpoint="databricks-meta-llama-3-1-70b-instruct")
```

### Use a Genie Space as an Agent (Preview)
> **Note:** Requires Genie API Private Preview. Contact your Databricks account team for enablement.

```python
from databricks_langchain.genie import GenieAgent

genie_agent = GenieAgent(
    "space-id", "Genie",
    description="This Genie space has access to sales data in Europe"
)
```

---

## Contribution Guide
We welcome contributions! Please see our [contribution guidelines](https://github.com/databricks/databricks-ai-bridge/tree/main/integrations/langchain) for details.

## License
This project is licensed under the [MIT License](LICENSE).

Thank you for using Databricks LangChain!


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "databricks-langchain",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Prithvi Kannan <prithvi.kannan@databricks.com>",
    "download_url": null,
    "platform": null,
    "description": "# \ud83e\udd9c\ud83d\udd17 Databricks LangChain Integration\n\nThe `databricks-langchain` package provides seamless integration of Databricks AI features into LangChain applications. This repository is now the central hub for all Databricks-related LangChain components, consolidating previous packages such as `langchain-databricks` and `langchain-community`.\n\n## Installation\n\n### From PyPI\n```sh\npip install databricks-langchain\n```\n\n### From Source\n```sh\npip install git+https://git@github.com/databricks/databricks-ai-bridge.git#subdirectory=integrations/langchain\n```\n\n## Key Features\n\n- **LLMs Integration:** Use Databricks-hosted large language models (LLMs) like Llama and Mixtral through `ChatDatabricks`.\n- **Vector Search:** Store and query vector representations using `DatabricksVectorSearch`.\n- **Embeddings:** Generate embeddings with `DatabricksEmbeddings`.\n- **Genie:** Use [Genie](https://www.databricks.com/product/ai-bi/genie) in Langchain.\n\n## Getting Started\n\n### Use LLMs on Databricks\n```python\nfrom databricks_langchain import ChatDatabricks\n\nllm = ChatDatabricks(endpoint=\"databricks-meta-llama-3-1-70b-instruct\")\n```\n\n### Use a Genie Space as an Agent (Preview)\n> **Note:** Requires Genie API Private Preview. Contact your Databricks account team for enablement.\n\n```python\nfrom databricks_langchain.genie import GenieAgent\n\ngenie_agent = GenieAgent(\n    \"space-id\", \"Genie\",\n    description=\"This Genie space has access to sales data in Europe\"\n)\n```\n\n---\n\n## Contribution Guide\nWe welcome contributions! Please see our [contribution guidelines](https://github.com/databricks/databricks-ai-bridge/tree/main/integrations/langchain) for details.\n\n## License\nThis project is licensed under the [MIT License](LICENSE).\n\nThank you for using Databricks LangChain!\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Support for Databricks AI support in LangChain",
    "version": "0.2.0",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a7334007493e40ee25056f89bdee8e2fb34d76b2b8403cedb0f6e4d16f46d6a0",
                "md5": "6ee725cf6666a09b2500eb232e37f923",
                "sha256": "2806affb25c7ae07cbc8a917ac2f96e4eb3ff34b794c82409c08ea2c5137a776"
            },
            "downloads": -1,
            "filename": "databricks_langchain-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6ee725cf6666a09b2500eb232e37f923",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 21133,
            "upload_time": "2025-01-22T01:00:38",
            "upload_time_iso_8601": "2025-01-22T01:00:38.221219Z",
            "url": "https://files.pythonhosted.org/packages/a7/33/4007493e40ee25056f89bdee8e2fb34d76b2b8403cedb0f6e4d16f46d6a0/databricks_langchain-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-22 01:00:38",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "databricks-langchain"
}
        
Elapsed time: 0.37341s