dataclasses-avroschema


Namedataclasses-avroschema JSON
Version 0.65.5 PyPI version JSON
download
home_pageNone
SummaryGenerate Avro Schemas from Python classes. Serialize/Deserialize python instances with avro schemas
upload_time2024-12-02 20:24:22
maintainerNone
docs_urlNone
authorMarcos Schroh
requires_python<4.0,>=3.9
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Dataclasses Avro Schema

Generate [avro schemas](https://avro.apache.org/docs/1.8.2/spec.html) from python dataclasses, [Pydantic](https://docs.pydantic.dev/latest/) models and [Faust](https://faust-streaming.github.io/faust/) Records. [Code generation](https://marcosschroh.github.io/dataclasses-avroschema/model_generator/) from avro schemas. [Serialize/Deserialize](https://marcosschroh.github.io/dataclasses-avroschema/serialization/) python instances with avro schemas

[![Tests](https://github.com/marcosschroh/dataclasses-avroschema/actions/workflows/tests.yaml/badge.svg)](https://github.com/marcosschroh/dataclasses-avroschema/actions/workflows/tests.yaml)
[![GitHub license](https://img.shields.io/github/license/marcosschroh/dataclasses-avroschema.svg)](https://github.com/marcosschroh/dataclasses-avroschema/blob/master/LICENSE)
[![codecov](https://codecov.io/gh/marcosschroh/dataclasses-avroschema/branch/master/graph/badge.svg)](https://codecov.io/gh/marcosschroh/dataclasses-avroschema)
![python version](https://img.shields.io/badge/python-3.9%2B-yellowgreen)

## Requirements

`python 3.9+`

## Installation

with `pip` or `poetry`:

`pip install dataclasses-avroschema` or `poetry add dataclasses-avroschema`

### Extras

- [pydantic](https://docs.pydantic.dev/): `pip install 'dataclasses-avroschema[pydantic]'` or `poetry add dataclasses-avroschema --extras "pydantic"`
- [faust-streaming](https://github.com/faust-streaming/faust): `pip install 'dataclasses-avroschema[faust]'` or `poetry add dataclasses-avroschema --extras "faust"`
- [faker](https://github.com/joke2k/faker): `pip install 'dataclasses-avroschema[faker]'` or `poetry add dataclasses-avroschema --extras "faker"`
- [dc-avro](https://marcosschroh.github.io/dc-avro/): `pip install 'dataclasses-avroschema[cli]'` or `poetry add dataclasses-avroschema --with cli`

*Note*: You can install all extra dependencies with `pip install dataclasses-avroschema[faust,pydantic,faker,cli]` or `poetry add dataclasses-avroschema --extras "pydantic faust faker cli"`

## Documentation

https://marcosschroh.github.io/dataclasses-avroschema/

## Usage

### Generating the avro schema

```python
from dataclasses import dataclass
import enum

import typing

from dataclasses_avroschema import AvroModel


class FavoriteColor(str, enum.Enum):
    BLUE = "BLUE"
    YELLOW = "YELLOW"
    GREEN = "GREEN"


@dataclass
class User(AvroModel):
    "An User"
    name: str
    age: int
    pets: typing.List[str]
    accounts: typing.Dict[str, int]
    favorite_colors: FavoriteColor
    country: str = "Argentina"
    address: typing.Optional[str] = None

    class Meta:
        namespace = "User.v1"
        aliases = ["user-v1", "super user"]


print(User.avro_schema())

# {
#    "type": "record",
#    "name": "User",
#    "fields": [
#        {"name": "name", "type": "string"},
#        {"name": "age", "type": "long"},
#        {"name": "pets", "type": {"type": "array", "items": "string", "name": "pet"}},
#        {"name": "accounts", "type": {"type": "map", "values": "long", "name": "account"}},
#        {"name": "favorite_colors", "type": {"type": "enum", "name": "FavoriteColor", "symbols": ["BLUE", "YELLOW", "GREEN"]}},
#        {"name": "country", "type": "string", "default": "Argentina"},
#        {"name": "address", "type": ["null", "string"], "default": null}
#    ], 
#    "doc": "An User",
#    "namespace": "User.v1", 
#    "aliases": ["user-v1", "super user"]
# }

assert User.avro_schema_to_python() == {
    "type": "record",
    "name": "User",
    "doc": "An User",
    "namespace": "User.v1",
    "aliases": ["user-v1", "super user"],
    "fields": [
        {"name": "name", "type": "string"},
        {"name": "age", "type": "long"},
        {"name": "pets", "type": {"type": "array", "items": "string", "name": "pet"}},
        {"name": "accounts", "type": {"type": "map", "values": "long", "name": "account"}},
        {"name": "favorite_colors", "type": {"type": "enum", "name": "FavoriteColor", "symbols": ["BLUE", "YELLOW", "GREEN"]}},
        {"name": "country", "type": "string", "default": "Argentina"},
        {"name": "address", "type": ["null", "string"], "default": None}
    ],
}
```

### Serialization to avro or avro-json and json payload

For serialization is neccesary to use python class/dataclasses instance

```python
from dataclasses import dataclass

import typing

from dataclasses_avroschema import AvroModel


@dataclass
class Address(AvroModel):
    "An Address"
    street: str
    street_number: int


@dataclass
class User(AvroModel):
    "User with multiple Address"
    name: str
    age: int
    addresses: typing.List[Address]

address_data = {
    "street": "test",
    "street_number": 10,
}

# create an Address instance
address = Address(**address_data)

data_user = {
    "name": "john",
    "age": 20,
    "addresses": [address],
}

# create an User instance
user = User(**data_user)

# serialization
assert user.serialize() == b"\x08john(\x02\x08test\x14\x00"

assert user.serialize(
    serialization_type="avro-json"
) == b'{"name": "john", "age": 20, "addresses": [{"street": "test", "street_number": 10}]}'

# # Get the json from the instance
assert user.to_json() == '{"name": "john", "age": 20, "addresses": [{"street": "test", "street_number": 10}]}'

# # Get a python dict
assert user.to_dict() == {
    "name": "john", 
    "age": 20, 
    "addresses": [
        {"street": "test", "street_number": 10}
    ]
}
```

### Deserialization

Deserialization could take place with an instance dataclass or the dataclass itself. Can return the dict representation or a new class instance

```python
import typing
import dataclasses

from dataclasses_avroschema import AvroModel


@dataclasses.dataclass
class Address(AvroModel):
    "An Address"
    street: str
    street_number: int

@dataclasses.dataclass
class User(AvroModel):
    "User with multiple Address"
    name: str
    age: int
    addresses: typing.List[Address]

avro_binary = b"\x08john(\x02\x08test\x14\x00"
avro_json_binary = b'{"name": "john", "age": 20, "addresses": [{"street": "test", "street_number": 10}]}'

# return a new class instance!!
assert User.deserialize(avro_binary) == User(
    name='john', 
    age=20,
    addresses=[Address(street='test', street_number=10)]
)

# return a python dict
assert User.deserialize(avro_binary, create_instance=False) == {
    "name": "john",
    "age": 20,
    "addresses": [
        {"street": "test", "street_number": 10}
    ]
}

# return a new class instance!!
assert User.deserialize(avro_json_binary, serialization_type="avro-json") == User(
    name='john',
    age=20,
    addresses=[Address(street='test', street_number=10)]
)

# return a python dict
assert User.deserialize(
    avro_json_binary,
    serialization_type="avro-json",
    create_instance=False
) == {"name": "john", "age": 20, "addresses": [{"street": "test", "street_number": 10}]}
```

## Pydantic integration

To add `dataclasses-avroschema` functionality to `pydantic` you only need to replace `BaseModel` by `AvroBaseModel`:

```python
import typing
import enum

from dataclasses_avroschema.pydantic import AvroBaseModel

from pydantic import Field, ValidationError


class FavoriteColor(str, enum.Enum):
    BLUE = "BLUE"
    YELLOW = "YELLOW"
    GREEN = "GREEN"


class UserAdvance(AvroBaseModel):
    name: str
    age: int
    pets: typing.List[str] = Field(default_factory=lambda: ["dog", "cat"])
    accounts: typing.Dict[str, int] = Field(default_factory=lambda: {"key": 1})
    has_car: bool = False
    favorite_colors: FavoriteColor = FavoriteColor.BLUE
    country: str = "Argentina"
    address: typing.Optional[str] = None

    class Meta:
        schema_doc = False


assert UserAdvance.avro_schema_to_python() == {
    "type": "record",
    "name": "UserAdvance",
    "fields": [
        {"name": "name", "type": "string"},
        {"name": "age", "type": "long"},
        {"name": "pets", "type": {"type": "array", "items": "string", "name": "pet"}, "default": ["dog", "cat"]},
        {"name": "accounts", "type": {"type": "map", "values": "long", "name": "account"}, "default": {"key": 1}},
        {"name": "has_car", "type": "boolean", "default": False},{"name": "favorite_colors", "type": {"type": "enum", "name": "FavoriteColor", "symbols": ["BLUE", "YELLOW", "GREEN"]}, "default": "BLUE"},
        {"name": "country", "type": "string", "default": "Argentina"}, {"name": "address", "type": ["null", "string"], "default": None}
    ]
}

print(UserAdvance.json_schema())

# {
#   "$defs": {"FavoriteColor": {"enum": ["BLUE", "YELLOW", "GREEN"], "title": "FavoriteColor", "type": "string"}},
#   "properties": {
#       "name": {"title": "Name", "type": "string"},
#       "age": {"title": "Age", "type": "integer"},
#       "pets": {"items": {"type": "string"}, "title": "Pets", "type": "array"},
#       "accounts": {"additionalProperties": {"type": "integer"}, "title": "Accounts", "type": "object"},
#       "has_car": {"default": false, "title": "Has Car", "type": "boolean"},
#       "favorite_colors": {"allOf": [{"$ref": "#/$defs/FavoriteColor"}], "default": "BLUE"},
#       "country": {"default": "Argentina", "title": "Country", "type": "string"},
#       "address": {"anyOf": [{"type": "string"}, {"type": "null"}], "default": null, "title": "Address"}
#   }, 
#   "required": ["name", "age"],
#   "title": "UserAdvance",
#   "type": "object"
# }"""

user = UserAdvance(name="bond", age=50)

# pydantic
assert user.dict() == {
    'name': 'bond',
    'age': 50,
    'pets': ['dog', 'cat'],
    'accounts': {'key': 1},
    'has_car': False,
    'favorite_colors': FavoriteColor.BLUE,
    'country': 'Argentina',
    'address': None
}

# pydantic
print(user.json())

assert user.json() == '{"name":"bond","age":50,"pets":["dog","cat"],"accounts":{"key":1},"has_car":false,"favorite_colors":"BLUE","country":"Argentina","address":null}'

# pydantic
try:
    user = UserAdvance(name="bond")
except ValidationError as exc:
    ...

# dataclasses-avroschema
event = user.serialize()
assert event == b'\x08bondd\x04\x06dog\x06cat\x00\x02\x06key\x02\x00\x00\x00\x12Argentina\x00'

assert UserAdvance.deserialize(data=event) == UserAdvance(
    name='bond',
    age=50, 
    pets=['dog', 'cat'],
    accounts={'key': 1},
    has_car=False, 
    favorite_colors=FavoriteColor.BLUE,
    country='Argentina', 
    address=None
)
```

## Examples with python streaming drivers (kafka and redis)

Under [examples](https://github.com/marcosschroh/dataclasses-avroschema/tree/master/examples) folder you can find 3 differents kafka examples, one with [aiokafka](https://github.com/aio-libs/aiokafka) (`async`) showing the simplest use case when a `AvroModel` instance is serialized and sent it thorught kafka, and the event is consumed.
The other two examples are `sync` using the [kafka-python](https://github.com/dpkp/kafka-python) driver, where the `avro-json` serialization and `schema evolution` (`FULL` compatibility) is shown.
Also, there are two `redis` examples using `redis streams` with [walrus](https://github.com/coleifer/walrus) and [redisgears-py](https://github.com/RedisGears/redisgears-py)

## Factory and fixtures

[Dataclasses Avro Schema](https://github.com/marcosschroh/dataclasses-avroschema) also includes a `factory` feature, so you can generate `fast` python instances and use them, for example, to test your data streaming pipelines. Instances can be generated using the `fake` method.

*Note*: This feature is not enabled by default and requires you have the `faker` extra installed. You may install it with `pip install 'dataclasses-avroschema[faker]'`

```python
import typing
import dataclasses

from dataclasses_avroschema import AvroModel


@dataclasses.dataclass
class Address(AvroModel):
    "An Address"
    street: str
    street_number: int


@dataclasses.dataclass
class User(AvroModel):
    "User with multiple Address"
    name: str
    age: int
    addresses: typing.List[Address]


Address.fake()
# >>>> Address(street='PxZJILDRgbXyhWrrPWxQ', street_number=2067)

User.fake()
# >>>> User(name='VGSBbOGfSGjkMDnefHIZ', age=8974, addresses=[Address(street='vNpPYgesiHUwwzGcmMiS', street_number=4790)])
```

## Features

- [x] Primitive types: int, long, double, float, boolean, string and null support
- [x] Complex types: enum, array, map, fixed, unions and records support
- [x] `typing.Annotated` supported
- [x] `typing.Literal` supported
- [x] Logical Types: date, time (millis and micro), datetime (millis and micro), uuid support
- [x] Schema relations (oneToOne, oneToMany)
- [x] Recursive Schemas
- [x] Generate Avro Schemas from `faust.Record`
- [x] Instance serialization correspondent to `avro schema` generated
- [x] Data deserialization. Return python dict or class instance
- [x] Generate json from python class instance
- [x] Case Schemas
- [x] Generate models from `avsc` files
- [x] Examples of integration with `kafka` drivers: [aiokafka](https://github.com/aio-libs/aiokafka), [kafka-python](https://github.com/dpkp/kafka-python)
- [x] Example of integration  with `redis` drivers: [walrus](https://github.com/coleifer/walrus) and [redisgears-py](https://github.com/RedisGears/redisgears-py)
- [x] Factory instances
- [x] [Pydantic](https://pydantic-docs.helpmanual.io/) integration

## Development

[Poetry](https://python-poetry.org/docs/) is needed to install the dependencies and develope locally

1. Install dependencies: `poetry install --all-extras`
2. Code linting: `./scripts/format`
3. Run tests: `./scripts/test`
4. Tests documentation: `./scripts/test-documentation`

For commit messages we use [commitizen](https://commitizen-tools.github.io/commitizen/) in order to standardize a way of committing rules

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "dataclasses-avroschema",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Marcos Schroh",
    "author_email": "schrohm@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/36/1b/0c3fe7be5265d6ba583c03b8a1f828f872ad4a4e1565aba3eb3009205456/dataclasses_avroschema-0.65.5.tar.gz",
    "platform": null,
    "description": "# Dataclasses Avro Schema\n\nGenerate [avro schemas](https://avro.apache.org/docs/1.8.2/spec.html) from python dataclasses, [Pydantic](https://docs.pydantic.dev/latest/) models and [Faust](https://faust-streaming.github.io/faust/) Records. [Code generation](https://marcosschroh.github.io/dataclasses-avroschema/model_generator/) from avro schemas. [Serialize/Deserialize](https://marcosschroh.github.io/dataclasses-avroschema/serialization/) python instances with avro schemas\n\n[![Tests](https://github.com/marcosschroh/dataclasses-avroschema/actions/workflows/tests.yaml/badge.svg)](https://github.com/marcosschroh/dataclasses-avroschema/actions/workflows/tests.yaml)\n[![GitHub license](https://img.shields.io/github/license/marcosschroh/dataclasses-avroschema.svg)](https://github.com/marcosschroh/dataclasses-avroschema/blob/master/LICENSE)\n[![codecov](https://codecov.io/gh/marcosschroh/dataclasses-avroschema/branch/master/graph/badge.svg)](https://codecov.io/gh/marcosschroh/dataclasses-avroschema)\n![python version](https://img.shields.io/badge/python-3.9%2B-yellowgreen)\n\n## Requirements\n\n`python 3.9+`\n\n## Installation\n\nwith `pip` or `poetry`:\n\n`pip install dataclasses-avroschema` or `poetry add dataclasses-avroschema`\n\n### Extras\n\n- [pydantic](https://docs.pydantic.dev/): `pip install 'dataclasses-avroschema[pydantic]'` or `poetry add dataclasses-avroschema --extras \"pydantic\"`\n- [faust-streaming](https://github.com/faust-streaming/faust): `pip install 'dataclasses-avroschema[faust]'` or `poetry add dataclasses-avroschema --extras \"faust\"`\n- [faker](https://github.com/joke2k/faker): `pip install 'dataclasses-avroschema[faker]'` or `poetry add dataclasses-avroschema --extras \"faker\"`\n- [dc-avro](https://marcosschroh.github.io/dc-avro/): `pip install 'dataclasses-avroschema[cli]'` or `poetry add dataclasses-avroschema --with cli`\n\n*Note*: You can install all extra dependencies with `pip install dataclasses-avroschema[faust,pydantic,faker,cli]` or `poetry add dataclasses-avroschema --extras \"pydantic faust faker cli\"`\n\n## Documentation\n\nhttps://marcosschroh.github.io/dataclasses-avroschema/\n\n## Usage\n\n### Generating the avro schema\n\n```python\nfrom dataclasses import dataclass\nimport enum\n\nimport typing\n\nfrom dataclasses_avroschema import AvroModel\n\n\nclass FavoriteColor(str, enum.Enum):\n    BLUE = \"BLUE\"\n    YELLOW = \"YELLOW\"\n    GREEN = \"GREEN\"\n\n\n@dataclass\nclass User(AvroModel):\n    \"An User\"\n    name: str\n    age: int\n    pets: typing.List[str]\n    accounts: typing.Dict[str, int]\n    favorite_colors: FavoriteColor\n    country: str = \"Argentina\"\n    address: typing.Optional[str] = None\n\n    class Meta:\n        namespace = \"User.v1\"\n        aliases = [\"user-v1\", \"super user\"]\n\n\nprint(User.avro_schema())\n\n# {\n#    \"type\": \"record\",\n#    \"name\": \"User\",\n#    \"fields\": [\n#        {\"name\": \"name\", \"type\": \"string\"},\n#        {\"name\": \"age\", \"type\": \"long\"},\n#        {\"name\": \"pets\", \"type\": {\"type\": \"array\", \"items\": \"string\", \"name\": \"pet\"}},\n#        {\"name\": \"accounts\", \"type\": {\"type\": \"map\", \"values\": \"long\", \"name\": \"account\"}},\n#        {\"name\": \"favorite_colors\", \"type\": {\"type\": \"enum\", \"name\": \"FavoriteColor\", \"symbols\": [\"BLUE\", \"YELLOW\", \"GREEN\"]}},\n#        {\"name\": \"country\", \"type\": \"string\", \"default\": \"Argentina\"},\n#        {\"name\": \"address\", \"type\": [\"null\", \"string\"], \"default\": null}\n#    ], \n#    \"doc\": \"An User\",\n#    \"namespace\": \"User.v1\", \n#    \"aliases\": [\"user-v1\", \"super user\"]\n# }\n\nassert User.avro_schema_to_python() == {\n    \"type\": \"record\",\n    \"name\": \"User\",\n    \"doc\": \"An User\",\n    \"namespace\": \"User.v1\",\n    \"aliases\": [\"user-v1\", \"super user\"],\n    \"fields\": [\n        {\"name\": \"name\", \"type\": \"string\"},\n        {\"name\": \"age\", \"type\": \"long\"},\n        {\"name\": \"pets\", \"type\": {\"type\": \"array\", \"items\": \"string\", \"name\": \"pet\"}},\n        {\"name\": \"accounts\", \"type\": {\"type\": \"map\", \"values\": \"long\", \"name\": \"account\"}},\n        {\"name\": \"favorite_colors\", \"type\": {\"type\": \"enum\", \"name\": \"FavoriteColor\", \"symbols\": [\"BLUE\", \"YELLOW\", \"GREEN\"]}},\n        {\"name\": \"country\", \"type\": \"string\", \"default\": \"Argentina\"},\n        {\"name\": \"address\", \"type\": [\"null\", \"string\"], \"default\": None}\n    ],\n}\n```\n\n### Serialization to avro or avro-json and json payload\n\nFor serialization is neccesary to use python class/dataclasses instance\n\n```python\nfrom dataclasses import dataclass\n\nimport typing\n\nfrom dataclasses_avroschema import AvroModel\n\n\n@dataclass\nclass Address(AvroModel):\n    \"An Address\"\n    street: str\n    street_number: int\n\n\n@dataclass\nclass User(AvroModel):\n    \"User with multiple Address\"\n    name: str\n    age: int\n    addresses: typing.List[Address]\n\naddress_data = {\n    \"street\": \"test\",\n    \"street_number\": 10,\n}\n\n# create an Address instance\naddress = Address(**address_data)\n\ndata_user = {\n    \"name\": \"john\",\n    \"age\": 20,\n    \"addresses\": [address],\n}\n\n# create an User instance\nuser = User(**data_user)\n\n# serialization\nassert user.serialize() == b\"\\x08john(\\x02\\x08test\\x14\\x00\"\n\nassert user.serialize(\n    serialization_type=\"avro-json\"\n) == b'{\"name\": \"john\", \"age\": 20, \"addresses\": [{\"street\": \"test\", \"street_number\": 10}]}'\n\n# # Get the json from the instance\nassert user.to_json() == '{\"name\": \"john\", \"age\": 20, \"addresses\": [{\"street\": \"test\", \"street_number\": 10}]}'\n\n# # Get a python dict\nassert user.to_dict() == {\n    \"name\": \"john\", \n    \"age\": 20, \n    \"addresses\": [\n        {\"street\": \"test\", \"street_number\": 10}\n    ]\n}\n```\n\n### Deserialization\n\nDeserialization could take place with an instance dataclass or the dataclass itself. Can return the dict representation or a new class instance\n\n```python\nimport typing\nimport dataclasses\n\nfrom dataclasses_avroschema import AvroModel\n\n\n@dataclasses.dataclass\nclass Address(AvroModel):\n    \"An Address\"\n    street: str\n    street_number: int\n\n@dataclasses.dataclass\nclass User(AvroModel):\n    \"User with multiple Address\"\n    name: str\n    age: int\n    addresses: typing.List[Address]\n\navro_binary = b\"\\x08john(\\x02\\x08test\\x14\\x00\"\navro_json_binary = b'{\"name\": \"john\", \"age\": 20, \"addresses\": [{\"street\": \"test\", \"street_number\": 10}]}'\n\n# return a new class instance!!\nassert User.deserialize(avro_binary) == User(\n    name='john', \n    age=20,\n    addresses=[Address(street='test', street_number=10)]\n)\n\n# return a python dict\nassert User.deserialize(avro_binary, create_instance=False) == {\n    \"name\": \"john\",\n    \"age\": 20,\n    \"addresses\": [\n        {\"street\": \"test\", \"street_number\": 10}\n    ]\n}\n\n# return a new class instance!!\nassert User.deserialize(avro_json_binary, serialization_type=\"avro-json\") == User(\n    name='john',\n    age=20,\n    addresses=[Address(street='test', street_number=10)]\n)\n\n# return a python dict\nassert User.deserialize(\n    avro_json_binary,\n    serialization_type=\"avro-json\",\n    create_instance=False\n) == {\"name\": \"john\", \"age\": 20, \"addresses\": [{\"street\": \"test\", \"street_number\": 10}]}\n```\n\n## Pydantic integration\n\nTo add `dataclasses-avroschema` functionality to `pydantic` you only need to replace `BaseModel` by `AvroBaseModel`:\n\n```python\nimport typing\nimport enum\n\nfrom dataclasses_avroschema.pydantic import AvroBaseModel\n\nfrom pydantic import Field, ValidationError\n\n\nclass FavoriteColor(str, enum.Enum):\n    BLUE = \"BLUE\"\n    YELLOW = \"YELLOW\"\n    GREEN = \"GREEN\"\n\n\nclass UserAdvance(AvroBaseModel):\n    name: str\n    age: int\n    pets: typing.List[str] = Field(default_factory=lambda: [\"dog\", \"cat\"])\n    accounts: typing.Dict[str, int] = Field(default_factory=lambda: {\"key\": 1})\n    has_car: bool = False\n    favorite_colors: FavoriteColor = FavoriteColor.BLUE\n    country: str = \"Argentina\"\n    address: typing.Optional[str] = None\n\n    class Meta:\n        schema_doc = False\n\n\nassert UserAdvance.avro_schema_to_python() == {\n    \"type\": \"record\",\n    \"name\": \"UserAdvance\",\n    \"fields\": [\n        {\"name\": \"name\", \"type\": \"string\"},\n        {\"name\": \"age\", \"type\": \"long\"},\n        {\"name\": \"pets\", \"type\": {\"type\": \"array\", \"items\": \"string\", \"name\": \"pet\"}, \"default\": [\"dog\", \"cat\"]},\n        {\"name\": \"accounts\", \"type\": {\"type\": \"map\", \"values\": \"long\", \"name\": \"account\"}, \"default\": {\"key\": 1}},\n        {\"name\": \"has_car\", \"type\": \"boolean\", \"default\": False},{\"name\": \"favorite_colors\", \"type\": {\"type\": \"enum\", \"name\": \"FavoriteColor\", \"symbols\": [\"BLUE\", \"YELLOW\", \"GREEN\"]}, \"default\": \"BLUE\"},\n        {\"name\": \"country\", \"type\": \"string\", \"default\": \"Argentina\"}, {\"name\": \"address\", \"type\": [\"null\", \"string\"], \"default\": None}\n    ]\n}\n\nprint(UserAdvance.json_schema())\n\n# {\n#   \"$defs\": {\"FavoriteColor\": {\"enum\": [\"BLUE\", \"YELLOW\", \"GREEN\"], \"title\": \"FavoriteColor\", \"type\": \"string\"}},\n#   \"properties\": {\n#       \"name\": {\"title\": \"Name\", \"type\": \"string\"},\n#       \"age\": {\"title\": \"Age\", \"type\": \"integer\"},\n#       \"pets\": {\"items\": {\"type\": \"string\"}, \"title\": \"Pets\", \"type\": \"array\"},\n#       \"accounts\": {\"additionalProperties\": {\"type\": \"integer\"}, \"title\": \"Accounts\", \"type\": \"object\"},\n#       \"has_car\": {\"default\": false, \"title\": \"Has Car\", \"type\": \"boolean\"},\n#       \"favorite_colors\": {\"allOf\": [{\"$ref\": \"#/$defs/FavoriteColor\"}], \"default\": \"BLUE\"},\n#       \"country\": {\"default\": \"Argentina\", \"title\": \"Country\", \"type\": \"string\"},\n#       \"address\": {\"anyOf\": [{\"type\": \"string\"}, {\"type\": \"null\"}], \"default\": null, \"title\": \"Address\"}\n#   }, \n#   \"required\": [\"name\", \"age\"],\n#   \"title\": \"UserAdvance\",\n#   \"type\": \"object\"\n# }\"\"\"\n\nuser = UserAdvance(name=\"bond\", age=50)\n\n# pydantic\nassert user.dict() == {\n    'name': 'bond',\n    'age': 50,\n    'pets': ['dog', 'cat'],\n    'accounts': {'key': 1},\n    'has_car': False,\n    'favorite_colors': FavoriteColor.BLUE,\n    'country': 'Argentina',\n    'address': None\n}\n\n# pydantic\nprint(user.json())\n\nassert user.json() == '{\"name\":\"bond\",\"age\":50,\"pets\":[\"dog\",\"cat\"],\"accounts\":{\"key\":1},\"has_car\":false,\"favorite_colors\":\"BLUE\",\"country\":\"Argentina\",\"address\":null}'\n\n# pydantic\ntry:\n    user = UserAdvance(name=\"bond\")\nexcept ValidationError as exc:\n    ...\n\n# dataclasses-avroschema\nevent = user.serialize()\nassert event == b'\\x08bondd\\x04\\x06dog\\x06cat\\x00\\x02\\x06key\\x02\\x00\\x00\\x00\\x12Argentina\\x00'\n\nassert UserAdvance.deserialize(data=event) == UserAdvance(\n    name='bond',\n    age=50, \n    pets=['dog', 'cat'],\n    accounts={'key': 1},\n    has_car=False, \n    favorite_colors=FavoriteColor.BLUE,\n    country='Argentina', \n    address=None\n)\n```\n\n## Examples with python streaming drivers (kafka and redis)\n\nUnder [examples](https://github.com/marcosschroh/dataclasses-avroschema/tree/master/examples) folder you can find 3 differents kafka examples, one with [aiokafka](https://github.com/aio-libs/aiokafka) (`async`) showing the simplest use case when a `AvroModel` instance is serialized and sent it thorught kafka, and the event is consumed.\nThe other two examples are `sync` using the [kafka-python](https://github.com/dpkp/kafka-python) driver, where the `avro-json` serialization and `schema evolution` (`FULL` compatibility) is shown.\nAlso, there are two `redis` examples using `redis streams` with [walrus](https://github.com/coleifer/walrus) and [redisgears-py](https://github.com/RedisGears/redisgears-py)\n\n## Factory and fixtures\n\n[Dataclasses Avro Schema](https://github.com/marcosschroh/dataclasses-avroschema) also includes a `factory` feature, so you can generate `fast` python instances and use them, for example, to test your data streaming pipelines. Instances can be generated using the `fake` method.\n\n*Note*: This feature is not enabled by default and requires you have the `faker` extra installed. You may install it with `pip install 'dataclasses-avroschema[faker]'`\n\n```python\nimport typing\nimport dataclasses\n\nfrom dataclasses_avroschema import AvroModel\n\n\n@dataclasses.dataclass\nclass Address(AvroModel):\n    \"An Address\"\n    street: str\n    street_number: int\n\n\n@dataclasses.dataclass\nclass User(AvroModel):\n    \"User with multiple Address\"\n    name: str\n    age: int\n    addresses: typing.List[Address]\n\n\nAddress.fake()\n# >>>> Address(street='PxZJILDRgbXyhWrrPWxQ', street_number=2067)\n\nUser.fake()\n# >>>> User(name='VGSBbOGfSGjkMDnefHIZ', age=8974, addresses=[Address(street='vNpPYgesiHUwwzGcmMiS', street_number=4790)])\n```\n\n## Features\n\n- [x] Primitive types: int, long, double, float, boolean, string and null support\n- [x] Complex types: enum, array, map, fixed, unions and records support\n- [x] `typing.Annotated` supported\n- [x] `typing.Literal` supported\n- [x] Logical Types: date, time (millis and micro), datetime (millis and micro), uuid support\n- [x] Schema relations (oneToOne, oneToMany)\n- [x] Recursive Schemas\n- [x] Generate Avro Schemas from `faust.Record`\n- [x] Instance serialization correspondent to `avro schema` generated\n- [x] Data deserialization. Return python dict or class instance\n- [x] Generate json from python class instance\n- [x] Case Schemas\n- [x] Generate models from `avsc` files\n- [x] Examples of integration with `kafka` drivers: [aiokafka](https://github.com/aio-libs/aiokafka), [kafka-python](https://github.com/dpkp/kafka-python)\n- [x] Example of integration  with `redis` drivers: [walrus](https://github.com/coleifer/walrus) and [redisgears-py](https://github.com/RedisGears/redisgears-py)\n- [x] Factory instances\n- [x] [Pydantic](https://pydantic-docs.helpmanual.io/) integration\n\n## Development\n\n[Poetry](https://python-poetry.org/docs/) is needed to install the dependencies and develope locally\n\n1. Install dependencies: `poetry install --all-extras`\n2. Code linting: `./scripts/format`\n3. Run tests: `./scripts/test`\n4. Tests documentation: `./scripts/test-documentation`\n\nFor commit messages we use [commitizen](https://commitizen-tools.github.io/commitizen/) in order to standardize a way of committing rules\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Generate Avro Schemas from Python classes. Serialize/Deserialize python instances with avro schemas",
    "version": "0.65.5",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a189288fc6a8ed638cc2ed7398027b59a94caf3d1a8bfbbb5a1872686af57a01",
                "md5": "7d6bec43671b52581a7ab7239719a36a",
                "sha256": "a8643760547c0eccbbcedf919532738f1bfd80ff81854ebe4f52094b35a4a06f"
            },
            "downloads": -1,
            "filename": "dataclasses_avroschema-0.65.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7d6bec43671b52581a7ab7239719a36a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 57561,
            "upload_time": "2024-12-02T20:24:20",
            "upload_time_iso_8601": "2024-12-02T20:24:20.021137Z",
            "url": "https://files.pythonhosted.org/packages/a1/89/288fc6a8ed638cc2ed7398027b59a94caf3d1a8bfbbb5a1872686af57a01/dataclasses_avroschema-0.65.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "361b0c3fe7be5265d6ba583c03b8a1f828f872ad4a4e1565aba3eb3009205456",
                "md5": "c91b81ca6b0e69dc9b57aa656faf2647",
                "sha256": "01e96fd66f7058094f7a0b86c072bf8e9d996de3c33622143774ea00a4803638"
            },
            "downloads": -1,
            "filename": "dataclasses_avroschema-0.65.5.tar.gz",
            "has_sig": false,
            "md5_digest": "c91b81ca6b0e69dc9b57aa656faf2647",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 45774,
            "upload_time": "2024-12-02T20:24:22",
            "upload_time_iso_8601": "2024-12-02T20:24:22.101769Z",
            "url": "https://files.pythonhosted.org/packages/36/1b/0c3fe7be5265d6ba583c03b8a1f828f872ad4a4e1565aba3eb3009205456/dataclasses_avroschema-0.65.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-02 20:24:22",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "dataclasses-avroschema"
}
        
Elapsed time: 0.53388s