datacompy_report
================
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
## Install
``` sh
pip install datacompy-report
```
## How to use
1. Create ‘datacompy.core.Compare’ object
2. Instantiate a new `datacompy_report.DatacompyReport` object
3. Create Report:
- Excel format
- more to come…
Raw data
{
"_id": null,
"home_page": "https://github.com/nagol/datacompy_report",
"name": "datacompy-report",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "nbdev jupyter notebook python",
"author": "Logan Lossing",
"author_email": "loganlossing@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/11/f0/4dd7e06a02d1ddbd91c4ae71d64b6af41506f20120b5c21f54407c589d6f/datacompy-report-0.0.1.tar.gz",
"platform": null,
"description": "datacompy_report\n================\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n## Install\n\n``` sh\npip install datacompy-report\n```\n\n## How to use\n\n1. Create \u2018datacompy.core.Compare\u2019 object\n2. Instantiate a new `datacompy_report.DatacompyReport` object\n3. Create Report:\n - Excel format\n - more to come\u2026\n",
"bugtrack_url": null,
"license": "Apache Software License 2.0",
"summary": "Create reports allowing for comparing two DataFrames.",
"version": "0.0.1",
"split_keywords": [
"nbdev",
"jupyter",
"notebook",
"python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ff3bc70ae61bd7444320115b1cd4c565d8107f9b369beb7a5a8534e61daf5ee8",
"md5": "de42856dcd8ec34d873dce2655a8f627",
"sha256": "bad7d9655af5e7943ad98bc8cccd457e428103ff5de68abf70a98af57a866d12"
},
"downloads": -1,
"filename": "datacompy_report-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "de42856dcd8ec34d873dce2655a8f627",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 9609,
"upload_time": "2023-01-04T20:39:16",
"upload_time_iso_8601": "2023-01-04T20:39:16.191421Z",
"url": "https://files.pythonhosted.org/packages/ff/3b/c70ae61bd7444320115b1cd4c565d8107f9b369beb7a5a8534e61daf5ee8/datacompy_report-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "11f04dd7e06a02d1ddbd91c4ae71d64b6af41506f20120b5c21f54407c589d6f",
"md5": "e20b5c74c7fa38db847efd6de36a0cf1",
"sha256": "d2c9630863c0eaf63b1bf76ed20a1a06a6ed413028ec48c918b1be662daa374e"
},
"downloads": -1,
"filename": "datacompy-report-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "e20b5c74c7fa38db847efd6de36a0cf1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 9929,
"upload_time": "2023-01-04T20:39:18",
"upload_time_iso_8601": "2023-01-04T20:39:18.006963Z",
"url": "https://files.pythonhosted.org/packages/11/f0/4dd7e06a02d1ddbd91c4ae71d64b6af41506f20120b5c21f54407c589d6f/datacompy-report-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-04 20:39:18",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "nagol",
"github_project": "datacompy_report",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "datacompy-report"
}