# datagrid
Create a datagrid of mixed-media items, and log to comet.com.
## Installation
```
pip install datagrid
```
## Example
The following demo program will log 100 random images, scores, and categories:
```python
from comet_ml import start
from datagrid import DataGrid, Image
import random
from PIL import Image as PImage
import requests
experiment = start(project_name="datagrids")
categories = ["sunset", "landscape", "water", "tree", "city"]
dg = DataGrid(
columns=["Image", "Score", "Category"],
name="Demo"
)
url = "https://picsum.photos/200/300"
for i in range(100):
im = PImage.open(requests.get(url, stream=True).raw)
category = random.choice(categories)
score = random.random()
image = Image(im, metadata={"category": category, "score": score})
dg.append([image, score, category])
dg.log(experiment)
experiment.end()
```
## Visualization

Log into <a href="https://comet.com">comet.com</a> to see results.
Raw data
{
"_id": null,
"home_page": "https://github.com/dsblank/datagrid",
"name": "datagrid",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "data science, python, machine learning",
"author": "DataGrid Development Team",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/61/11/61fdf470ecec745098f95a0e6c97f6ef915fd9c75098f55e4824eac53015/datagrid-1.0.11.tar.gz",
"platform": "Linux",
"description": "# datagrid\n\nCreate a datagrid of mixed-media items, and log to comet.com.\n\n## Installation\n\n```\npip install datagrid\n```\n\n## Example\n\nThe following demo program will log 100 random images, scores, and categories:\n\n```python\nfrom comet_ml import start\nfrom datagrid import DataGrid, Image\n\nimport random\nfrom PIL import Image as PImage\nimport requests\n\nexperiment = start(project_name=\"datagrids\")\n\ncategories = [\"sunset\", \"landscape\", \"water\", \"tree\", \"city\"]\n\ndg = DataGrid(\n columns=[\"Image\", \"Score\", \"Category\"],\n name=\"Demo\"\n)\nurl = \"https://picsum.photos/200/300\"\nfor i in range(100):\n im = PImage.open(requests.get(url, stream=True).raw)\n category = random.choice(categories)\n score = random.random()\n image = Image(im, metadata={\"category\": category, \"score\": score})\n dg.append([image, score, category])\n\ndg.log(experiment)\nexperiment.end()\n```\n\n## Visualization\n\n\n\nLog into <a href=\"https://comet.com\">comet.com</a> to see results.\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "Tool for exploring columnar data, including multimedia",
"version": "1.0.11",
"project_urls": {
"Homepage": "https://github.com/dsblank/datagrid"
},
"split_keywords": [
"data science",
" python",
" machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "69229aab7adf5f0e9ce6bacfc2cbf08a995f34fc7061c0165d28b3517ab31f53",
"md5": "8458ca1fd82ee5d300017a6fff61a463",
"sha256": "9b64c84c6ca5995a8d786a7a4de45517479c29c1415d9b1ca325e8b4d1da078e"
},
"downloads": -1,
"filename": "datagrid-1.0.11-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8458ca1fd82ee5d300017a6fff61a463",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 104910,
"upload_time": "2025-01-14T14:51:47",
"upload_time_iso_8601": "2025-01-14T14:51:47.928570Z",
"url": "https://files.pythonhosted.org/packages/69/22/9aab7adf5f0e9ce6bacfc2cbf08a995f34fc7061c0165d28b3517ab31f53/datagrid-1.0.11-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "611161fdf470ecec745098f95a0e6c97f6ef915fd9c75098f55e4824eac53015",
"md5": "e51c5c484156a4539ad94bd870fafa62",
"sha256": "a2b2e556488d1a4077dd9d6d04e180d22c423c7e80398308ee80f7bf1140eb13"
},
"downloads": -1,
"filename": "datagrid-1.0.11.tar.gz",
"has_sig": false,
"md5_digest": "e51c5c484156a4539ad94bd870fafa62",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 93156,
"upload_time": "2025-01-14T14:51:50",
"upload_time_iso_8601": "2025-01-14T14:51:50.186784Z",
"url": "https://files.pythonhosted.org/packages/61/11/61fdf470ecec745098f95a0e6c97f6ef915fd9c75098f55e4824eac53015/datagrid-1.0.11.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-14 14:51:50",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dsblank",
"github_project": "datagrid",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "datagrid"
}