datagrid


Namedatagrid JSON
Version 1.0.11 PyPI version JSON
download
home_pagehttps://github.com/dsblank/datagrid
SummaryTool for exploring columnar data, including multimedia
upload_time2025-01-14 14:51:50
maintainerNone
docs_urlNone
authorDataGrid Development Team
requires_python>=3.7
licenseMIT License
keywords data science python machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # datagrid

Create a datagrid of mixed-media items, and log to comet.com.

## Installation

```
pip install datagrid
```

## Example

The following demo program will log 100 random images, scores, and categories:

```python
from comet_ml import start
from datagrid import DataGrid, Image

import random
from PIL import Image as PImage
import requests

experiment = start(project_name="datagrids")

categories = ["sunset", "landscape", "water", "tree", "city"]

dg = DataGrid(
    columns=["Image", "Score", "Category"],
    name="Demo"
)
url = "https://picsum.photos/200/300"
for i in range(100):
    im = PImage.open(requests.get(url, stream=True).raw)
    category = random.choice(categories)
    score = random.random()
    image = Image(im, metadata={"category": category, "score": score})
    dg.append([image, score, category])

dg.log(experiment)
experiment.end()
```

## Visualization

![image](https://github.com/user-attachments/assets/a2a168cd-8e82-4418-b793-58e76bc5ab63)

Log into <a href="https://comet.com">comet.com</a> to see results.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/dsblank/datagrid",
    "name": "datagrid",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "data science, python, machine learning",
    "author": "DataGrid Development Team",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/61/11/61fdf470ecec745098f95a0e6c97f6ef915fd9c75098f55e4824eac53015/datagrid-1.0.11.tar.gz",
    "platform": "Linux",
    "description": "# datagrid\n\nCreate a datagrid of mixed-media items, and log to comet.com.\n\n## Installation\n\n```\npip install datagrid\n```\n\n## Example\n\nThe following demo program will log 100 random images, scores, and categories:\n\n```python\nfrom comet_ml import start\nfrom datagrid import DataGrid, Image\n\nimport random\nfrom PIL import Image as PImage\nimport requests\n\nexperiment = start(project_name=\"datagrids\")\n\ncategories = [\"sunset\", \"landscape\", \"water\", \"tree\", \"city\"]\n\ndg = DataGrid(\n    columns=[\"Image\", \"Score\", \"Category\"],\n    name=\"Demo\"\n)\nurl = \"https://picsum.photos/200/300\"\nfor i in range(100):\n    im = PImage.open(requests.get(url, stream=True).raw)\n    category = random.choice(categories)\n    score = random.random()\n    image = Image(im, metadata={\"category\": category, \"score\": score})\n    dg.append([image, score, category])\n\ndg.log(experiment)\nexperiment.end()\n```\n\n## Visualization\n\n![image](https://github.com/user-attachments/assets/a2a168cd-8e82-4418-b793-58e76bc5ab63)\n\nLog into <a href=\"https://comet.com\">comet.com</a> to see results.\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Tool for exploring columnar data, including multimedia",
    "version": "1.0.11",
    "project_urls": {
        "Homepage": "https://github.com/dsblank/datagrid"
    },
    "split_keywords": [
        "data science",
        " python",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "69229aab7adf5f0e9ce6bacfc2cbf08a995f34fc7061c0165d28b3517ab31f53",
                "md5": "8458ca1fd82ee5d300017a6fff61a463",
                "sha256": "9b64c84c6ca5995a8d786a7a4de45517479c29c1415d9b1ca325e8b4d1da078e"
            },
            "downloads": -1,
            "filename": "datagrid-1.0.11-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8458ca1fd82ee5d300017a6fff61a463",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 104910,
            "upload_time": "2025-01-14T14:51:47",
            "upload_time_iso_8601": "2025-01-14T14:51:47.928570Z",
            "url": "https://files.pythonhosted.org/packages/69/22/9aab7adf5f0e9ce6bacfc2cbf08a995f34fc7061c0165d28b3517ab31f53/datagrid-1.0.11-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "611161fdf470ecec745098f95a0e6c97f6ef915fd9c75098f55e4824eac53015",
                "md5": "e51c5c484156a4539ad94bd870fafa62",
                "sha256": "a2b2e556488d1a4077dd9d6d04e180d22c423c7e80398308ee80f7bf1140eb13"
            },
            "downloads": -1,
            "filename": "datagrid-1.0.11.tar.gz",
            "has_sig": false,
            "md5_digest": "e51c5c484156a4539ad94bd870fafa62",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 93156,
            "upload_time": "2025-01-14T14:51:50",
            "upload_time_iso_8601": "2025-01-14T14:51:50.186784Z",
            "url": "https://files.pythonhosted.org/packages/61/11/61fdf470ecec745098f95a0e6c97f6ef915fd9c75098f55e4824eac53015/datagrid-1.0.11.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-14 14:51:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "dsblank",
    "github_project": "datagrid",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "datagrid"
}
        
Elapsed time: 0.49458s