datalad-metalad


Namedatalad-metalad JSON
Version 0.4.22 PyPI version JSON
download
home_pagehttps://github.com/datalad/datalad-metalad
SummaryDataLad extension for semantic metadata handling
upload_time2024-01-23 11:20:46
maintainer
docs_urlNone
authorThe DataLad Team and Contributors
requires_python>=3.7
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DataLad extension for semantic metadata handling

[![Build_status](https://ci.appveyor.com/api/projects/status/hlwg6yi008mbmr1m?svg=true)](https://ci.appveyor.com/project/mih/datalad-metalad) [![codecov.io](https://codecov.io/github/datalad/datalad-metalad/coverage.svg?branch=master)](https://codecov.io/github/datalad/datalad-metalad?branch=master) [![GitHub release](https://img.shields.io/github/release/datalad/datalad-metalad.svg)](https://GitHub.com/datalad/datalad-metalad/releases/) [![PyPI version fury.io](https://badge.fury.io/py/datalad-metalad.svg)](https://pypi.python.org/pypi/datalad-metalad/) [![Documentation](https://readthedocs.org/projects/datalad-metalad/badge/?version=latest)](http://docs.datalad.org/projects/metalad/en/latest)


### Overview

This software is a [DataLad](http://datalad.org) extension that equips DataLad
with an alternative command suite for metadata handling (extraction, aggregation,
filtering, and reporting).


#### Command(s) currently provided by this extension

- `meta-extract` -- run an extractor on a file or dataset and emit the 
resulting metadata (stdout).

- `meta-filter` -- run an filter over existing metadata and return the
resulting metadata (stdout).

- `meta-add` -- add a metadata record or a list of metadata records
(possibly received on stdin) to a metadata store, usually to the git-repo of the dataset.

- `meta-aggregate` -- aggregate metadata from multiple local or remote
metadata-stores into a local metadata store.

- `meta-dump` -- reporting metadata from local or remote metadata stores. Allows
to select metadata by file- or dataset-path matching patterns including
dataset versions and dataset IDs. 

- `meta conduct` -- execute processing pipelines that consist of a provider
which emits objects that should be processed, e.g. files or metadata, and
a pipeline of processors, that perform operations on the provided objects,
such as metadata-extraction and metadata-adding.Processors
are usually executed in parallel. A few pipeline definitions are provided
with the release.

#### Commands currently under development:

- `meta-export` -- write a flat representation of metadata to a file-system. For now you
  can export your metadata to a JSON-lines file named `metadata-dump.jsonl`:
    ```
     datalad meta-dump -d <dataset-path> -r >metadata-dump.jsonl
    ```

- `meta-import` -- import a flat representation of metadata from a file-system. For now you 
   can import metadata from a JSON-lines file, e.g.  `metadata-dump.jsonl` like this:
    ```
     datalad meta-add -d <dataset-path> --json-lines -i metadata-dump.jsonl
    ```

- `meta-ingest-previous` -- ingest metadata from `metalad<=0.2.1`.


#### Additional metadata extractor implementations

- Compatible with the previous families of extractors provided by datalad
and by metalad, i.e. `metalad_core`, `metalad_annex`, `metalad_custom`, `metalad_runprov`
 
- New metadata extractor paradigm that distinguishes between file- and
dataset-level extractors. Included are two example extractors, `metalad_example_dataset`, 
and `metalad_example_file`

- `metalad_external_dataset` and `metalad_external_file`, a dataset- and a
file-extractors that execute external processes to generate metadata allow
processing of the externally created metadata in datalad.

- `metalad_studyminimeta` -- a dataset-level extractor that reads studyminimeta yaml
files and produces metadata that contains a JSON-LD compatible description of the 
data in the input file



#### Indexers

- Provides indexers for the new datalad indexer-plugin interface. These indexers
convert metadata in proprietary formats into a set of key-value pairs that can
be used by `datalad search` to search for content.

- `indexer_studyminimeta` -- converts studyminimeta JSON-LD description into
key-value pairs for `datalad search`.

- `indexer_jsonld` -- a generic JSON-LD indexer that aims at converting any 
JSON-LD descriptions into a set of key-value pairs that reflect the content of the
JSON-LD description.


## Installation

Before you install this package, please make sure that you [install a recent
version of git-annex](https://git-annex.branchable.com/install).  Afterwards,
install the latest version of `datalad-metalad` from
[PyPi](https://pypi.org/project/datalad-metalad). It is recommended to use
a dedicated [virtualenv](https://virtualenv.pypa.io):

    # create and enter a new virtual environment (strongly recommended)
    virtualenv --system-site-packages --python=python3 ~/env/datalad
    . ~/env/datalad/bin/activate

    # install from PyPi
    pip install datalad-metalad


## Support

For general information on how to use or contribute to DataLad (and this
extension), please see the [DataLad website](http://datalad.org) or the
[main GitHub project page](http://datalad.org). The documentation is found
here: http://docs.datalad.org/projects/metalad

All bugs, concerns and enhancement requests for this software can be submitted here:
https://github.com/datalad/datalad-metalad/issues

If you have a problem or would like to ask a question about how to use DataLad,
please [submit a question to
NeuroStars.org](https://neurostars.org/tags/datalad) with a ``datalad`` tag.
NeuroStars.org is a platform similar to StackOverflow but dedicated to
neuroinformatics.

All previous DataLad questions are available here:
http://neurostars.org/tags/datalad/

## Acknowledgements

This DataLad extension was developed with support from the German Federal
Ministry of Education and Research (BMBF 01GQ1905), and the US National Science
Foundation (NSF 1912266).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/datalad/datalad-metalad",
    "name": "datalad-metalad",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "The DataLad Team and Contributors",
    "author_email": "team@datalad.org",
    "download_url": "https://files.pythonhosted.org/packages/f9/4f/d0f0ce074bb8024bc47d02564bd75742dec91ad08220e7cac28c0b7a81e1/datalad_metalad-0.4.22.tar.gz",
    "platform": null,
    "description": "# DataLad extension for semantic metadata handling\n\n[![Build_status](https://ci.appveyor.com/api/projects/status/hlwg6yi008mbmr1m?svg=true)](https://ci.appveyor.com/project/mih/datalad-metalad) [![codecov.io](https://codecov.io/github/datalad/datalad-metalad/coverage.svg?branch=master)](https://codecov.io/github/datalad/datalad-metalad?branch=master) [![GitHub release](https://img.shields.io/github/release/datalad/datalad-metalad.svg)](https://GitHub.com/datalad/datalad-metalad/releases/) [![PyPI version fury.io](https://badge.fury.io/py/datalad-metalad.svg)](https://pypi.python.org/pypi/datalad-metalad/) [![Documentation](https://readthedocs.org/projects/datalad-metalad/badge/?version=latest)](http://docs.datalad.org/projects/metalad/en/latest)\n\n\n### Overview\n\nThis software is a [DataLad](http://datalad.org) extension that equips DataLad\nwith an alternative command suite for metadata handling (extraction, aggregation,\nfiltering, and reporting).\n\n\n#### Command(s) currently provided by this extension\n\n- `meta-extract` -- run an extractor on a file or dataset and emit the \nresulting metadata (stdout).\n\n- `meta-filter` -- run an filter over existing metadata and return the\nresulting metadata (stdout).\n\n- `meta-add` -- add a metadata record or a list of metadata records\n(possibly received on stdin) to a metadata store, usually to the git-repo of the dataset.\n\n- `meta-aggregate` -- aggregate metadata from multiple local or remote\nmetadata-stores into a local metadata store.\n\n- `meta-dump` -- reporting metadata from local or remote metadata stores. Allows\nto select metadata by file- or dataset-path matching patterns including\ndataset versions and dataset IDs. \n\n- `meta conduct` -- execute processing pipelines that consist of a provider\nwhich emits objects that should be processed, e.g. files or metadata, and\na pipeline of processors, that perform operations on the provided objects,\nsuch as metadata-extraction and metadata-adding.Processors\nare usually executed in parallel. A few pipeline definitions are provided\nwith the release.\n\n#### Commands currently under development:\n\n- `meta-export` -- write a flat representation of metadata to a file-system. For now you\n  can export your metadata to a JSON-lines file named `metadata-dump.jsonl`:\n    ```\n     datalad meta-dump -d <dataset-path> -r >metadata-dump.jsonl\n    ```\n\n- `meta-import` -- import a flat representation of metadata from a file-system. For now you \n   can import metadata from a JSON-lines file, e.g.  `metadata-dump.jsonl` like this:\n    ```\n     datalad meta-add -d <dataset-path> --json-lines -i metadata-dump.jsonl\n    ```\n\n- `meta-ingest-previous` -- ingest metadata from `metalad<=0.2.1`.\n\n\n#### Additional metadata extractor implementations\n\n- Compatible with the previous families of extractors provided by datalad\nand by metalad, i.e. `metalad_core`, `metalad_annex`, `metalad_custom`, `metalad_runprov`\n \n- New metadata extractor paradigm that distinguishes between file- and\ndataset-level extractors. Included are two example extractors, `metalad_example_dataset`, \nand `metalad_example_file`\n\n- `metalad_external_dataset` and `metalad_external_file`, a dataset- and a\nfile-extractors that execute external processes to generate metadata allow\nprocessing of the externally created metadata in datalad.\n\n- `metalad_studyminimeta` -- a dataset-level extractor that reads studyminimeta yaml\nfiles and produces metadata that contains a JSON-LD compatible description of the \ndata in the input file\n\n\n\n#### Indexers\n\n- Provides indexers for the new datalad indexer-plugin interface. These indexers\nconvert metadata in proprietary formats into a set of key-value pairs that can\nbe used by `datalad search` to search for content.\n\n- `indexer_studyminimeta` -- converts studyminimeta JSON-LD description into\nkey-value pairs for `datalad search`.\n\n- `indexer_jsonld` -- a generic JSON-LD indexer that aims at converting any \nJSON-LD descriptions into a set of key-value pairs that reflect the content of the\nJSON-LD description.\n\n\n## Installation\n\nBefore you install this package, please make sure that you [install a recent\nversion of git-annex](https://git-annex.branchable.com/install).  Afterwards,\ninstall the latest version of `datalad-metalad` from\n[PyPi](https://pypi.org/project/datalad-metalad). It is recommended to use\na dedicated [virtualenv](https://virtualenv.pypa.io):\n\n    # create and enter a new virtual environment (strongly recommended)\n    virtualenv --system-site-packages --python=python3 ~/env/datalad\n    . ~/env/datalad/bin/activate\n\n    # install from PyPi\n    pip install datalad-metalad\n\n\n## Support\n\nFor general information on how to use or contribute to DataLad (and this\nextension), please see the [DataLad website](http://datalad.org) or the\n[main GitHub project page](http://datalad.org). The documentation is found\nhere: http://docs.datalad.org/projects/metalad\n\nAll bugs, concerns and enhancement requests for this software can be submitted here:\nhttps://github.com/datalad/datalad-metalad/issues\n\nIf you have a problem or would like to ask a question about how to use DataLad,\nplease [submit a question to\nNeuroStars.org](https://neurostars.org/tags/datalad) with a ``datalad`` tag.\nNeuroStars.org is a platform similar to StackOverflow but dedicated to\nneuroinformatics.\n\nAll previous DataLad questions are available here:\nhttp://neurostars.org/tags/datalad/\n\n## Acknowledgements\n\nThis DataLad extension was developed with support from the German Federal\nMinistry of Education and Research (BMBF 01GQ1905), and the US National Science\nFoundation (NSF 1912266).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "DataLad extension for semantic metadata handling",
    "version": "0.4.22",
    "project_urls": {
        "Homepage": "https://github.com/datalad/datalad-metalad"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cfd18dac93b6cab935e222861fe27e1c0235204dcaf072e7d1c88da156037dbf",
                "md5": "b615c0510a06f06b95237c5d46607642",
                "sha256": "915200eb7e483d9d45dad07557bf59e6d6e81c5506e21726eda0e5fb6f1383f8"
            },
            "downloads": -1,
            "filename": "datalad_metalad-0.4.22-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b615c0510a06f06b95237c5d46607642",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 228269,
            "upload_time": "2024-01-23T11:20:44",
            "upload_time_iso_8601": "2024-01-23T11:20:44.308122Z",
            "url": "https://files.pythonhosted.org/packages/cf/d1/8dac93b6cab935e222861fe27e1c0235204dcaf072e7d1c88da156037dbf/datalad_metalad-0.4.22-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f94fd0f0ce074bb8024bc47d02564bd75742dec91ad08220e7cac28c0b7a81e1",
                "md5": "b6b107bad3b27a13895104c193be8c31",
                "sha256": "14c48598de4fd23298ac0b326f8d9d1b215fef756d67dd4d173108cedbad1756"
            },
            "downloads": -1,
            "filename": "datalad_metalad-0.4.22.tar.gz",
            "has_sig": false,
            "md5_digest": "b6b107bad3b27a13895104c193be8c31",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 198189,
            "upload_time": "2024-01-23T11:20:46",
            "upload_time_iso_8601": "2024-01-23T11:20:46.084608Z",
            "url": "https://files.pythonhosted.org/packages/f9/4f/d0f0ce074bb8024bc47d02564bd75742dec91ad08220e7cac28c0b7a81e1/datalad_metalad-0.4.22.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-23 11:20:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "datalad",
    "github_project": "datalad-metalad",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "appveyor": true,
    "requirements": [],
    "tox": true,
    "lcname": "datalad-metalad"
}
        
Elapsed time: 0.34152s