datalib-ha


Namedatalib-ha JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/ahmedhamila/Datalib
SummaryA comprehensive data analysis library for Python
upload_time2024-11-30 16:32:20
maintainerNone
docs_urlNone
authorAhmed Hamila
requires_python>=3.8
licenseNone
keywords data-analysis statistics machine-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DataLib: Python Data Analysis Library

## Overview

DataLib is a comprehensive Python library designed to simplify data manipulation, statistical analysis, visualization, and machine learning tasks. It provides an intuitive and powerful set of tools for data scientists, researchers, and analysts.

## Features

### Data Manipulation
- CSV file loading and saving
- Data filtering
- Missing value handling
- Data normalization

### Statistical Analysis
- Descriptive statistics
- Correlation analysis
- T-tests
- Chi-square tests

### Data Visualization
- Bar plots
- Histograms
- Scatter plots
- Correlation heatmaps

### Advanced Analysis
- Linear and Polynomial Regression
- Classification Algorithms (KNN, Decision Trees)
- Clustering (K-means)
- Dimensionality Reduction (PCA)

## Installation

```bash
pip install datalib
```

## Quick Examples

### Data Manipulation
```python
from datalib.data_manipulation import DataManipulation

# Load CSV
df = DataManipulation.load_csv('data.csv')

# Filter data
filtered_df = DataManipulation.filter_data(df, {'age': lambda x: x > 25})
```

### Statistical Analysis
```python
from datalib.statistics import StatisticalAnalysis

# Calculate descriptive stats
stats = StatisticalAnalysis.descriptive_stats(df['column'])

# Correlation matrix
corr_matrix = StatisticalAnalysis.correlation(df)
```

### Visualization
```python
from datalib.visualization import DataVisualization

# Create bar plot
DataVisualization.bar_plot(df, 'category', 'value')

# Scatter plot
DataVisualization.scatter_plot(df, 'x_column', 'y_column')
```

## Contributing

Contributions are welcome! Please check our GitHub repository for guidelines.

## License

This project is licensed under the MIT License.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ahmedhamila/Datalib",
    "name": "datalib-ha",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "data-analysis statistics machine-learning",
    "author": "Ahmed Hamila",
    "author_email": "csahmed17@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ce/fc/eb888699fd1399a8ccdc401e4b8803dfb69dc0c73eea274a9d72a349db49/datalib_ha-1.0.0.tar.gz",
    "platform": null,
    "description": "# DataLib: Python Data Analysis Library\r\n\r\n## Overview\r\n\r\nDataLib is a comprehensive Python library designed to simplify data manipulation, statistical analysis, visualization, and machine learning tasks. It provides an intuitive and powerful set of tools for data scientists, researchers, and analysts.\r\n\r\n## Features\r\n\r\n### Data Manipulation\r\n- CSV file loading and saving\r\n- Data filtering\r\n- Missing value handling\r\n- Data normalization\r\n\r\n### Statistical Analysis\r\n- Descriptive statistics\r\n- Correlation analysis\r\n- T-tests\r\n- Chi-square tests\r\n\r\n### Data Visualization\r\n- Bar plots\r\n- Histograms\r\n- Scatter plots\r\n- Correlation heatmaps\r\n\r\n### Advanced Analysis\r\n- Linear and Polynomial Regression\r\n- Classification Algorithms (KNN, Decision Trees)\r\n- Clustering (K-means)\r\n- Dimensionality Reduction (PCA)\r\n\r\n## Installation\r\n\r\n```bash\r\npip install datalib\r\n```\r\n\r\n## Quick Examples\r\n\r\n### Data Manipulation\r\n```python\r\nfrom datalib.data_manipulation import DataManipulation\r\n\r\n# Load CSV\r\ndf = DataManipulation.load_csv('data.csv')\r\n\r\n# Filter data\r\nfiltered_df = DataManipulation.filter_data(df, {'age': lambda x: x > 25})\r\n```\r\n\r\n### Statistical Analysis\r\n```python\r\nfrom datalib.statistics import StatisticalAnalysis\r\n\r\n# Calculate descriptive stats\r\nstats = StatisticalAnalysis.descriptive_stats(df['column'])\r\n\r\n# Correlation matrix\r\ncorr_matrix = StatisticalAnalysis.correlation(df)\r\n```\r\n\r\n### Visualization\r\n```python\r\nfrom datalib.visualization import DataVisualization\r\n\r\n# Create bar plot\r\nDataVisualization.bar_plot(df, 'category', 'value')\r\n\r\n# Scatter plot\r\nDataVisualization.scatter_plot(df, 'x_column', 'y_column')\r\n```\r\n\r\n## Contributing\r\n\r\nContributions are welcome! Please check our GitHub repository for guidelines.\r\n\r\n## License\r\n\r\nThis project is licensed under the MIT License.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A comprehensive data analysis library for Python",
    "version": "1.0.0",
    "project_urls": {
        "Documentation": "https://datalib-ha.readthedocs.io",
        "Homepage": "https://github.com/ahmedhamila/Datalib",
        "Source Code": "https://github.com/ahmedhamila/datalib"
    },
    "split_keywords": [
        "data-analysis",
        "statistics",
        "machine-learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "46350dc6fb4bf0ce4067b70c389ce9215a97c82f7e07cb37f56f8f39dfda7b21",
                "md5": "297a7c718538193b4fd39c113b73ccad",
                "sha256": "8f748cd6bd3f4f1098c5f8d87171198869602690c58ac7e116be5612e7c79ef4"
            },
            "downloads": -1,
            "filename": "datalib_ha-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "297a7c718538193b4fd39c113b73ccad",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 8130,
            "upload_time": "2024-11-30T16:32:18",
            "upload_time_iso_8601": "2024-11-30T16:32:18.870022Z",
            "url": "https://files.pythonhosted.org/packages/46/35/0dc6fb4bf0ce4067b70c389ce9215a97c82f7e07cb37f56f8f39dfda7b21/datalib_ha-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cefceb888699fd1399a8ccdc401e4b8803dfb69dc0c73eea274a9d72a349db49",
                "md5": "9d85080490ecfb65b58c25417ac2e5c8",
                "sha256": "26b201b223302c1bbe670d19d37c171eb9d423cc0f29ef1659dd4801b20c7fb9"
            },
            "downloads": -1,
            "filename": "datalib_ha-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "9d85080490ecfb65b58c25417ac2e5c8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 7909,
            "upload_time": "2024-11-30T16:32:20",
            "upload_time_iso_8601": "2024-11-30T16:32:20.530876Z",
            "url": "https://files.pythonhosted.org/packages/ce/fc/eb888699fd1399a8ccdc401e4b8803dfb69dc0c73eea274a9d72a349db49/datalib_ha-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-30 16:32:20",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ahmedhamila",
    "github_project": "Datalib",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "datalib-ha"
}
        
Elapsed time: 9.69531s