# 📊 DataMaster MCP
> **超级数据分析MCP工具** - 为AI提供强大的数据分析能力
## 🎯 核心理念
**工具专注数据获取和计算,AI专注智能分析和洞察**
## 🚀 快速开始
### 用户安装
```bash
pip install datamaster-mcp
```
### 开发者安装
```bash
# 1. 克隆项目
git clone https://github.com/szqshan/DataMaster.git
cd DataMaster
# 2. 自动设置开发环境
python scripts/setup_dev.py
# 3. 测试环境
python scripts/setup_dev.py --test-only
```
### 基本使用
1. **配置 Claude Desktop**
将以下配置添加到 Claude Desktop 的配置文件中:
```json
{
"mcpServers": {
"datamaster-mcp": {
"command": "python",
"args": ["-m", "datamaster_mcp.main"],
"env": {
"PYTHONPATH": "/path/to/your/project"
}
}
}
}
```
2. **使用示例**
```python
# 导入Excel数据
connect_data_source(
source_type="excel",
config={"file_path": "data.xlsx"},
target_table="my_data"
)
# 执行SQL查询
execute_sql("SELECT * FROM my_data LIMIT 10")
# 数据分析
analyze_data(analysis_type="basic_stats", table_name="my_data")
# 导出结果
export_data(export_type="excel", data_source="my_data")
```
## ✨ 核心功能
### 📁 数据导入导出
- **Excel/CSV文件导入** - 支持多种格式和编码
- **数据库连接** - MySQL、PostgreSQL、MongoDB、SQLite
- **API数据获取** - RESTful API连接和数据提取
- **多格式导出** - Excel、CSV、JSON格式导出
### 🔍 数据查询分析
- **SQL查询执行** - 本地和外部数据库查询
- **数据统计分析** - 基础统计、相关性、异常值检测
- **数据质量检查** - 缺失值、重复值分析
### 🛠️ 数据处理
- **数据清洗** - 去重、填充缺失值
- **数据转换** - 类型转换、格式化
- **数据聚合** - 分组统计、汇总
## 📚 文档
### 用户文档
- [用户使用手册](用户使用手册.md)
- [本地测试指南](LOCAL_TEST_GUIDE.md)
### 开发者文档
- [开发者文档](开发者文档.md)
- [开发流程指南](DEVELOPMENT_WORKFLOW.md) 🆕
- [项目结构说明](项目结构说明.md)
- [PyPI发布指南](PYPI_RELEASE_GUIDE.md)
### 快速开发
```bash
# 设置开发环境
python scripts/setup_dev.py
# 运行测试
python scripts/setup_dev.py --test-only
# 发布新版本
python scripts/release.py 1.0.2
```
### 版本信息
- **[更新日志](CHANGELOG.md)** - 版本更新记录
- **[版本信息](VERSION.md)** - 当前版本详情
## 🛡️ 安全特性
- SQL注入防护
- 危险操作拦截
- 查询结果限制
- 参数验证
- 环境变量管理敏感信息
## 📞 支持
- 📖 查看[用户使用手册](用户使用手册.md)获取详细使用说明
- 🛠️ 查看[开发者文档](开发者文档.md)了解技术细节
- 📁 查看[项目结构说明](项目结构说明.md)了解文件组织
- 🐛 提交Issue报告问题或建议
---
**版本**: v1.0.0 | **状态**: ✅ 稳定版 | **更新**: 2025-01-24
Raw data
{
"_id": null,
"home_page": "https://github.com/szqshan/DataMaster",
"name": "datamaster-mcp",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "mcp, data-analysis, ai, pandas, database, excel, csv, json, mysql, postgresql, mongodb, data-processing, analytics, business-intelligence",
"author": "Shan",
"author_email": "\"Shan (\u5b66\u4e60AI1000\u5929)\" <szqshan@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/7f/60/316c90bcdf402606ef65ca6c9e152dde1e5e471311f5771a74b85be0f4c0/datamaster_mcp-1.0.2.tar.gz",
"platform": null,
"description": "# \ud83d\udcca DataMaster MCP\r\n\r\n> **\u8d85\u7ea7\u6570\u636e\u5206\u6790MCP\u5de5\u5177** - \u4e3aAI\u63d0\u4f9b\u5f3a\u5927\u7684\u6570\u636e\u5206\u6790\u80fd\u529b\r\n\r\n## \ud83c\udfaf \u6838\u5fc3\u7406\u5ff5\r\n\r\n**\u5de5\u5177\u4e13\u6ce8\u6570\u636e\u83b7\u53d6\u548c\u8ba1\u7b97\uff0cAI\u4e13\u6ce8\u667a\u80fd\u5206\u6790\u548c\u6d1e\u5bdf**\r\n\r\n## \ud83d\ude80 \u5feb\u901f\u5f00\u59cb\r\n\r\n### \u7528\u6237\u5b89\u88c5\r\n\r\n```bash\r\npip install datamaster-mcp\r\n```\r\n\r\n### \u5f00\u53d1\u8005\u5b89\u88c5\r\n\r\n```bash\r\n# 1. \u514b\u9686\u9879\u76ee\r\ngit clone https://github.com/szqshan/DataMaster.git\r\ncd DataMaster\r\n\r\n# 2. \u81ea\u52a8\u8bbe\u7f6e\u5f00\u53d1\u73af\u5883\r\npython scripts/setup_dev.py\r\n\r\n# 3. \u6d4b\u8bd5\u73af\u5883\r\npython scripts/setup_dev.py --test-only\r\n```\r\n\r\n### \u57fa\u672c\u4f7f\u7528\r\n\r\n1. **\u914d\u7f6e Claude Desktop**\r\n\r\n\u5c06\u4ee5\u4e0b\u914d\u7f6e\u6dfb\u52a0\u5230 Claude Desktop \u7684\u914d\u7f6e\u6587\u4ef6\u4e2d\uff1a\r\n\r\n```json\r\n{\r\n \"mcpServers\": {\r\n \"datamaster-mcp\": {\r\n \"command\": \"python\",\r\n \"args\": [\"-m\", \"datamaster_mcp.main\"],\r\n \"env\": {\r\n \"PYTHONPATH\": \"/path/to/your/project\"\r\n }\r\n }\r\n }\r\n}\r\n```\r\n\r\n2. **\u4f7f\u7528\u793a\u4f8b**\r\n\r\n```python\r\n# \u5bfc\u5165Excel\u6570\u636e\r\nconnect_data_source(\r\n source_type=\"excel\",\r\n config={\"file_path\": \"data.xlsx\"},\r\n target_table=\"my_data\"\r\n)\r\n\r\n# \u6267\u884cSQL\u67e5\u8be2\r\nexecute_sql(\"SELECT * FROM my_data LIMIT 10\")\r\n\r\n# \u6570\u636e\u5206\u6790\r\nanalyze_data(analysis_type=\"basic_stats\", table_name=\"my_data\")\r\n\r\n# \u5bfc\u51fa\u7ed3\u679c\r\nexport_data(export_type=\"excel\", data_source=\"my_data\")\r\n```\r\n\r\n## \u2728 \u6838\u5fc3\u529f\u80fd\r\n\r\n### \ud83d\udcc1 \u6570\u636e\u5bfc\u5165\u5bfc\u51fa\r\n- **Excel/CSV\u6587\u4ef6\u5bfc\u5165** - \u652f\u6301\u591a\u79cd\u683c\u5f0f\u548c\u7f16\u7801\r\n- **\u6570\u636e\u5e93\u8fde\u63a5** - MySQL\u3001PostgreSQL\u3001MongoDB\u3001SQLite\r\n- **API\u6570\u636e\u83b7\u53d6** - RESTful API\u8fde\u63a5\u548c\u6570\u636e\u63d0\u53d6\r\n- **\u591a\u683c\u5f0f\u5bfc\u51fa** - Excel\u3001CSV\u3001JSON\u683c\u5f0f\u5bfc\u51fa\r\n\r\n### \ud83d\udd0d \u6570\u636e\u67e5\u8be2\u5206\u6790\r\n- **SQL\u67e5\u8be2\u6267\u884c** - \u672c\u5730\u548c\u5916\u90e8\u6570\u636e\u5e93\u67e5\u8be2\r\n- **\u6570\u636e\u7edf\u8ba1\u5206\u6790** - \u57fa\u7840\u7edf\u8ba1\u3001\u76f8\u5173\u6027\u3001\u5f02\u5e38\u503c\u68c0\u6d4b\r\n- **\u6570\u636e\u8d28\u91cf\u68c0\u67e5** - \u7f3a\u5931\u503c\u3001\u91cd\u590d\u503c\u5206\u6790\r\n\r\n### \ud83d\udee0\ufe0f \u6570\u636e\u5904\u7406\r\n- **\u6570\u636e\u6e05\u6d17** - \u53bb\u91cd\u3001\u586b\u5145\u7f3a\u5931\u503c\r\n- **\u6570\u636e\u8f6c\u6362** - \u7c7b\u578b\u8f6c\u6362\u3001\u683c\u5f0f\u5316\r\n- **\u6570\u636e\u805a\u5408** - \u5206\u7ec4\u7edf\u8ba1\u3001\u6c47\u603b\r\n\r\n## \ud83d\udcda \u6587\u6863\r\n\r\n### \u7528\u6237\u6587\u6863\r\n- [\u7528\u6237\u4f7f\u7528\u624b\u518c](\u7528\u6237\u4f7f\u7528\u624b\u518c.md)\r\n- [\u672c\u5730\u6d4b\u8bd5\u6307\u5357](LOCAL_TEST_GUIDE.md)\r\n\r\n### \u5f00\u53d1\u8005\u6587\u6863\r\n- [\u5f00\u53d1\u8005\u6587\u6863](\u5f00\u53d1\u8005\u6587\u6863.md)\r\n- [\u5f00\u53d1\u6d41\u7a0b\u6307\u5357](DEVELOPMENT_WORKFLOW.md) \ud83c\udd95\r\n- [\u9879\u76ee\u7ed3\u6784\u8bf4\u660e](\u9879\u76ee\u7ed3\u6784\u8bf4\u660e.md)\r\n- [PyPI\u53d1\u5e03\u6307\u5357](PYPI_RELEASE_GUIDE.md)\r\n\r\n### \u5feb\u901f\u5f00\u53d1\r\n```bash\r\n# \u8bbe\u7f6e\u5f00\u53d1\u73af\u5883\r\npython scripts/setup_dev.py\r\n\r\n# \u8fd0\u884c\u6d4b\u8bd5\r\npython scripts/setup_dev.py --test-only\r\n\r\n# \u53d1\u5e03\u65b0\u7248\u672c\r\npython scripts/release.py 1.0.2\r\n```\r\n\r\n### \u7248\u672c\u4fe1\u606f\r\n- **[\u66f4\u65b0\u65e5\u5fd7](CHANGELOG.md)** - \u7248\u672c\u66f4\u65b0\u8bb0\u5f55\r\n- **[\u7248\u672c\u4fe1\u606f](VERSION.md)** - \u5f53\u524d\u7248\u672c\u8be6\u60c5\r\n\r\n## \ud83d\udee1\ufe0f \u5b89\u5168\u7279\u6027\r\n\r\n- SQL\u6ce8\u5165\u9632\u62a4\r\n- \u5371\u9669\u64cd\u4f5c\u62e6\u622a\r\n- \u67e5\u8be2\u7ed3\u679c\u9650\u5236\r\n- \u53c2\u6570\u9a8c\u8bc1\r\n- \u73af\u5883\u53d8\u91cf\u7ba1\u7406\u654f\u611f\u4fe1\u606f\r\n\r\n## \ud83d\udcde \u652f\u6301\r\n\r\n- \ud83d\udcd6 \u67e5\u770b[\u7528\u6237\u4f7f\u7528\u624b\u518c](\u7528\u6237\u4f7f\u7528\u624b\u518c.md)\u83b7\u53d6\u8be6\u7ec6\u4f7f\u7528\u8bf4\u660e\r\n- \ud83d\udee0\ufe0f \u67e5\u770b[\u5f00\u53d1\u8005\u6587\u6863](\u5f00\u53d1\u8005\u6587\u6863.md)\u4e86\u89e3\u6280\u672f\u7ec6\u8282\r\n- \ud83d\udcc1 \u67e5\u770b[\u9879\u76ee\u7ed3\u6784\u8bf4\u660e](\u9879\u76ee\u7ed3\u6784\u8bf4\u660e.md)\u4e86\u89e3\u6587\u4ef6\u7ec4\u7ec7\r\n- \ud83d\udc1b \u63d0\u4ea4Issue\u62a5\u544a\u95ee\u9898\u6216\u5efa\u8bae\r\n\r\n---\r\n\r\n**\u7248\u672c**: v1.0.0 | **\u72b6\u6001**: \u2705 \u7a33\u5b9a\u7248 | **\u66f4\u65b0**: 2025-01-24\r\n",
"bugtrack_url": null,
"license": null,
"summary": "DataMaster MCP - AI-powered data analysis tool with MCP protocol support",
"version": "1.0.2",
"project_urls": {
"Bug Reports": "https://github.com/szqshan/DataMaster/issues",
"Documentation": "https://github.com/szqshan/DataMaster/blob/master/README.md",
"Homepage": "https://www.xueai.org",
"Learning Platform": "https://www.xueai.me",
"Source": "https://github.com/szqshan/DataMaster"
},
"split_keywords": [
"mcp",
" data-analysis",
" ai",
" pandas",
" database",
" excel",
" csv",
" json",
" mysql",
" postgresql",
" mongodb",
" data-processing",
" analytics",
" business-intelligence"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "c0a49f1b85e5e1807fa79d95cf9c9cd459887be4a24680a5a36c178cf85a10ae",
"md5": "82bb9caf7d41a7efaab22b9d80813f6d",
"sha256": "57f9bc0a5c8565daa422ebaf9dd02d7d09a0adfbc8099085470dc6b9977fe077"
},
"downloads": -1,
"filename": "datamaster_mcp-1.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "82bb9caf7d41a7efaab22b9d80813f6d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 75299,
"upload_time": "2025-07-25T10:09:25",
"upload_time_iso_8601": "2025-07-25T10:09:25.069179Z",
"url": "https://files.pythonhosted.org/packages/c0/a4/9f1b85e5e1807fa79d95cf9c9cd459887be4a24680a5a36c178cf85a10ae/datamaster_mcp-1.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7f60316c90bcdf402606ef65ca6c9e152dde1e5e471311f5771a74b85be0f4c0",
"md5": "15b40c49739218f0297816b9f23e4a3c",
"sha256": "1685e76a0f8f23d93dcb5834603bb5e5b2349a4b43e70c82a046adc1f8a2d27f"
},
"downloads": -1,
"filename": "datamaster_mcp-1.0.2.tar.gz",
"has_sig": false,
"md5_digest": "15b40c49739218f0297816b9f23e4a3c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 93637,
"upload_time": "2025-07-25T10:09:26",
"upload_time_iso_8601": "2025-07-25T10:09:26.715760Z",
"url": "https://files.pythonhosted.org/packages/7f/60/316c90bcdf402606ef65ca6c9e152dde1e5e471311f5771a74b85be0f4c0/datamaster_mcp-1.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-25 10:09:26",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "szqshan",
"github_project": "DataMaster",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "mcp",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"2.0.0"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.24.0"
]
]
},
{
"name": "openpyxl",
"specs": [
[
">=",
"3.1.0"
]
]
},
{
"name": "xlrd",
"specs": [
[
">=",
"2.0.0"
]
]
},
{
"name": "scipy",
"specs": [
[
">=",
"1.10.0"
]
]
},
{
"name": "python-dotenv",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "pymysql",
"specs": [
[
">=",
"1.1.0"
]
]
},
{
"name": "psycopg2-binary",
"specs": [
[
">=",
"2.9.0"
]
]
},
{
"name": "pymongo",
"specs": [
[
">=",
"4.5.0"
]
]
},
{
"name": "requests",
"specs": [
[
">=",
"2.28.0"
]
]
},
{
"name": "xmltodict",
"specs": [
[
">=",
"0.13.0"
]
]
}
],
"lcname": "datamaster-mcp"
}