datamimic-ce


Namedatamimic-ce JSON
Version 1.2.1 PyPI version JSON
download
home_pageNone
SummaryNone
upload_time2025-01-21 05:19:39
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords datamimic data synthetic generation privacy security testing modeling
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DATAMIMIC Community Edition 🌟

[![Maintainability Rating](https://sonarcloud.io/api/project_badges/measure?project=rapiddweller_datamimic&metric=sqale_rating)](https://sonarcloud.io/summary/new_code?id=rapiddweller_datamimic)
[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rapiddweller_datamimic&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rapiddweller_datamimic)
[![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=rapiddweller_datamimic&metric=security_rating)](https://sonarcloud.io/summary/new_code?id=rapiddweller_datamimic)
[![Coverage](https://sonarcloud.io/api/project_badges/measure?project=rapiddweller_datamimic&metric=coverage)](https://sonarcloud.io/summary/new_code?id=rapiddweller_datamimic)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python Version](https://img.shields.io/badge/Python-≥3.10-blue.svg)](https://www.python.org/downloads/)
[![GitHub Stars](https://img.shields.io/github/stars/rapiddweller/datamimic.svg)](https://github.com/rapiddweller/datamimic/stargazers)
[![GitHub Forks](https://img.shields.io/github/forks/rapiddweller/datamimic.svg)](https://github.com/rapiddweller/datamimic/network)
[![PyPI version](https://badge.fury.io/py/datamimic-ce.svg)](https://badge.fury.io/py/datamimic-ce)
[![Downloads](https://pepy.tech/badge/datamimic-ce)](https://pepy.tech/project/datamimic-ce)
---

## Introduction

Welcome to **DATAMIMIC**, the Model-Driven and AI-powered platform that revolutionizes test data generation! By leveraging advanced AI and model-driven technologies, DATAMIMIC enables developers and testers to create realistic, scalable, and privacy-compliant test data with ease.

[![Watch the video](https://img.youtube.com/vi/sycO7qd1Bhk/0.jpg)](https://www.youtube.com/watch?v=sycO7qd1Bhk)

---

## DATAMIMIC Feature Overview 🎯

### Core Features 🔵

#### 🧠 Model-Driven Generation

- Create sophisticated data models for consistent test data generation
- Define complex relationships between entities
- Support for nested and hierarchical data structures

#### 📊 Data Types & Integration

- **Basic Data Types Support**
  - All standard primitive types
  - Complex data structures
  - Custom data type definitions
- **Core Database Integration**
  - RDBMS support (PostgreSQL, MySQL, Oracle)
  - MongoDB integration
  - Basic import/export functionality

#### 🛡️ Data Privacy & Compliance

- GDPR-compliant data anonymization
- Basic pseudonymization capabilities
- Data masking for sensitive information
- Configurable privacy rules

#### ⚡ Core Capabilities

- **High Performance Engine**
  - Optimized for large datasets
  - Parallel processing support
  - Memory-efficient operations
- **Python Integration**
  - Native Python API
  - Seamless dependency management
  - Python script extensions
- **Basic Extensibility**
  - Custom generator support
  - Plugin architecture
  - Basic scripting capabilities

---

### Enterprise Features 🟣

#### 🧠 AI-Powered Generation

- **GAN-based Synthesis**
  - Realistic data patterns
  - Learning from existing datasets
  - Pattern replication
- **LLM Integration**
  - Natural language content
  - Context-aware generation
  - Semantic consistency
- **Automatic Modeling**
  - Schema inference
  - Pattern detection
  - Model optimization

#### 🔗 Advanced Integrations

- **Streaming Support**
  - Kafka integration
  - Real-time data generation
  - Stream processing
- **Enterprise Formats**
  - EDI processing
  - Advanced XSD handling
  - Custom format support
- **Advanced Connectors**
  - Enterprise systems
  - Cloud platforms
  - Legacy systems

#### 🛡️ Enhanced Privacy Features

- **Advanced Anonymization**
  - Context-aware masking
  - Reversible anonymization
  - Custom privacy rules
- **Compliance Tools**
  - Audit logging
  - Compliance reporting
  - Policy enforcement
- **Enterprise Security**
  - Role-based access
  - Encryption support
  - Security audit trails

#### 📈 Advanced Data Validation

- **Validation Framework**
  - Custom rule engines
  - Complex validation logic
  - Cross-field validation

---

## Why Use DATAMIMIC?

Traditional test data generation can be time-consuming and may compromise data privacy. DATAMIMIC addresses these challenges by:

- **Reducing Time-to-Market**: Quickly generate test data without manual intervention.
- **Enhancing Test Coverage**: Simulate diverse data scenarios for comprehensive testing.
- **Ensuring Compliance**: Maintain data privacy and comply with legal regulations.
- **Improving Data Quality**: Generate realistic data that mirrors production environments.

---

## Installation

### Prerequisites

- **Operating System**: Windows, macOS, or Linux
- **Python**: Version **3.10** or higher
- **Optional**: uv Package Manager for development setup [GitHub](https://github.com/astral-sh/uv)

### User Installation

The simplest way to get started with DATAMIMIC is through pip:

```bash
pip install datamimic-ce
```

Verify the installation:

```bash
datamimic --version
```

### Developer Installation

For contributors and developers who want to work with the source code:

1. Install uv Package Manager:

    ```bash
    pip install uv
    ```

2. Clone and set up the repository:

    ```bash
    git clone https://github.com/rapiddweller/datamimic.git
    cd datamimic
    uv sync
    ```

---

## Usage Guide

### Basic Usage

1. Create a new data generation project:

    ```bash
    datamimic init my-project
    cd my-project
    ```

2. Configure your data model in `datamimic.xml`:

    ```xml
    <setup>
        <generate name="datamimic_user_list" count="100" target="CSV,JSON">
            <variable name="person" entity="Person(min_age=18, max_age=90, female_quota=0.5)"/>
            <key name="id" generator="IncrementGenerator"/>
            <key name="first_name" script="person.given_name"/>
            <key name="last_name" script="person.family_name"/>
            <key name="gender" script="person.gender"/>
            <key name="birth_date" script="person.birthdate" converter="DateFormat('%d.%m.%Y')"/>
            <key name="email" script="person.family_name + '@' + person.given_name + '.de'"/>
            <key name="ce_user" values="True, False"/>
            <key name="ee_user" values="True, False"/>
            <key name="datamimic_lover" constant="DEFINITELY"/>
        </generate>
    </setup>
    ```

3. Generate data:

    ```bash
    datamimic run datamimic.xml
    ```

4. Access the generated data in the `output` directory.

    **json export:**

    ```json
   [
   {"id": 1, "first_name": "Mary", "last_name": "Mcgowan", "gender": "female", "birth_date": "1946-05-15T00:00:00", "email": "Mcgowan@Mary.de", "ce_user": false, "ee_user": true, "datamimic_lover": "DEFINITELY"},
   {"id": 2, "first_name": "Gabrielle", "last_name": "Malone", "gender": "female", "birth_date": "1989-11-27T00:00:00", "email": "Malone@Gabrielle.de", "ce_user": false, "ee_user": true, "datamimic_lover": "DEFINITELY"},
   {"id": 4, "first_name": "Margaret", "last_name": "Torres", "gender": "female", "birth_date": "2006-07-13T00:00:00", "email": "Torres@Margaret.de", "ce_user": false, "ee_user": false, "datamimic_lover": "DEFINITELY"},
    {"id": 5, "first_name": "Monica", "last_name": "Meyers", "gender": "female", "birth_date": "1983-07-22T00:00:00", "email": "Meyers@Monica.de", "ce_user": true, "ee_user": false, "datamimic_lover": "DEFINITELY"},
    {"id": 6, "first_name": "Jason", "last_name": "Davis", "gender": "male", "birth_date": "1941-07-05T00:00:00", "email": "Davis@Jason.de", "ce_user": true, "ee_user": false, "datamimic_lover": "DEFINITELY"},
    {"...":  "..."},
    {"id": 100, "first_name": "Jared", "last_name": "Rivas", "gender": "male", "birth_date": "1975-03-16T00:00:00", "email": "Rivas@Jared.de", "ce_user": true, "ee_user": true, "datamimic_lover": "DEFINITELY"}
   ]
    ```

    **csv export:**

    ```csv
    id|first_name|last_name|gender|birth_date|email|ce_user|ee_user|datamimic_lover
    1|Mary|Mcgowan|female|1946-05-15 00:00:00|Mcgowan@Mary.de|False|True|DEFINITELY
    2|Gabrielle|Malone|female|1989-11-27 00:00:00|Malone@Gabrielle.de|False|True|DEFINITELY
    3|Antonio|Davis|male|2005-05-12 00:00:00|Davis@Antonio.de|False|True|DEFINITELY
    4|Margaret|Torres|female|2006-07-13 00:00:00|Torres@Margaret.de|False|False|DEFINITELY
    5|Monica|Meyers|female|1983-07-22 00:00:00|Meyers@Monica.de|True|False|DEFINITELY
    ...
    100|Jason|Davis|male|1941-07-05 00:00:00|Davis@Jason.de|True|False|DEFINITELY
    ```

### Advanced Features

DATAMIMIC supports various advanced features:

- **Custom Generators**: Create your own data generators
- **Data Relationships**: Define complex relationships between entities
- **Import/Export Formats**: Support for JSON, XML, CSV, RDBMS and MongoDB
- **Import/Export Formats ( only EE )**: Kafka, EDI, XSD and more
- **Data Anonymization**: Anonymize data to comply with privacy regulations
- **Data Validation**: Define and enforce data validation rules
- **Scripting**: Extend functionality using Python scripts
- **Database Integration**: Connect to databases for seamless data generation
- **Model-Driven Generation**: Utilize models to generate realistic data
- **Validation Rules**: Define and enforce data validation rules
- **Scripting**: Extend functionality using Python scripts

---

## Examples and Demos

Explore our demo collection:

```bash
# List available demos
datamimic demo list

# Run a specific demo
datamimic demo create demo-model
datamimic run ./demo-model/datamimic.xml
```

Key demos include:

- Basic entity generation
- Complex relationships
- Database integration
- Custom generator creation
- Privacy compliance examples

Find more examples in the `datamimic_ce/demos` directory.

---

## Contributing

We ❤️ contributions! Here's how you can help:

- **Code Contributions**: Submit pull requests for new features or bug fixes.
- **Documentation**: Improve existing docs or help with translations.
- **Community Engagement**: Join discussions and support other users.

---

## 📜 DATAMIMIC Licensing Options

### 🌟 Community Edition

Open Source Freedom for Everyone

#### ✨ Key Benefits

- **🔓 MIT License**: Maximum freedom for innovation
- **💼 Commercial Ready**: Use freely in commercial projects
- **🔄 Modification Rights**: Full source code access and modification rights
- **🌍 No Restrictions**: Deploy anywhere, anytime

#### 🎁 What's Included

- **📦 Core Features**
  - Model-driven data generation
  - Basic data types & integrations
  - GDPR compliance tools
  
- **👥 Community Support**
  - Active GitHub community
  - Public issue tracking
  - Community discussions
  - Regular updates

#### 💫 Perfect For

- Individual developers
- Startups & small teams
- Open source projects
- Learning & evaluation
- POC development

---

### ⭐ Enterprise Edition

Professional Power for Business Success

#### 🚀 Premium Benefits

- **📋 Commercial License**: Enterprise-grade flexibility
- **🔐 Advanced Features**: Full suite of professional tools
- **🎯 Priority Support**: Direct access to expert team
- **🛠️ Custom Solutions**: Tailored to your needs

#### 💎 Premium Features

- **🤖 AI Capabilities**
  - GAN-based synthesis
  - LLM integration
  - Automated modeling
  
- **🔗 Enterprise Integration**
  - Advanced connectors
  - Kafka streaming
  - EDI support
  
- **🛡️ Enhanced Security**
  - Advanced privacy features
  - Compliance reporting
  - Audit trails

#### 🎯 Ideal For

- Large enterprises
- Financial institutions
- Healthcare organizations
- Government agencies
- High-compliance industries

#### 📞 Get Started
>
> Ready to unlock the full potential of DATAMIMIC?

**Contact Our Team:**

- 📧 Email: [sales@rapiddweller.com](mailto:sales@rapiddweller.com)
- 🌐 Visit: [datamimic.io/enterprise](https://datamimic.io)

---

### 🤝 Compare Editions

| Feature | Community | Enterprise |
|---------|-----------|------------|
| Base Features | ✅ | ✅ |
| Source Code Access | ✅ | ✅ |
| Commercial Use | ✅ | ✅ |
| AI Features | ❌ | ✅ |
| Priority Support | ❌ | ✅ |
| Enterprise Integrations | ❌ | ✅ |
| SLA Support | ❌ | ✅ |
| Custom Development | ❌ | ✅ |

---

> ***"Empower your data generation journey with the right DATAMIMIC edition for your needs"***

---

## Support

Need help or have questions? We're here for you!

- 📚 [Documentation](https://docs.datamimic.io)
- 💬 [GitHub Discussions](https://github.com/rapiddweller/datamimic/discussions)
- 🐛 [Issue Tracker](https://github.com/rapiddweller/datamimic/issues)
- 📧 [Email Support](mailto:support@rapiddweller.com)

---

## Connect with Us

Stay updated and connect with our community!

- 🌐 **Website**: [www.datamimic.io](https://datamimic.io)
- 🏢 **Rapiddweller**: [www.rapiddweller.com](https://rapiddweller.com)
- 💼 **LinkedIn**: [rapiddweller](https://www.linkedin.com/company/rapiddweller)

---

## Acknowledgments

A big thank you to all our contributors! Your efforts make DATAMIMIC possible.

---

**Don't forget to ⭐ star and 👀 watch this repository to stay updated!**

---

## Legal Notices

For detailed licensing information, please see the [LICENSE](LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "datamimic-ce",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "datamimic, data, synthetic, generation, privacy, security, testing, modeling",
    "author": null,
    "author_email": "\"Rapiddweller Asia Co., Ltd.\" <info@rapiddweller.com>",
    "download_url": "https://files.pythonhosted.org/packages/b0/54/77a720b49e056be7ca3ff6ec234fadb17556ce5dfe4cce6d835bf8ffb1d2/datamimic_ce-1.2.1.tar.gz",
    "platform": null,
    "description": "# DATAMIMIC Community Edition \ud83c\udf1f\n\n[![Maintainability Rating](https://sonarcloud.io/api/project_badges/measure?project=rapiddweller_datamimic&metric=sqale_rating)](https://sonarcloud.io/summary/new_code?id=rapiddweller_datamimic)\n[![Reliability Rating](https://sonarcloud.io/api/project_badges/measure?project=rapiddweller_datamimic&metric=reliability_rating)](https://sonarcloud.io/summary/new_code?id=rapiddweller_datamimic)\n[![Security Rating](https://sonarcloud.io/api/project_badges/measure?project=rapiddweller_datamimic&metric=security_rating)](https://sonarcloud.io/summary/new_code?id=rapiddweller_datamimic)\n[![Coverage](https://sonarcloud.io/api/project_badges/measure?project=rapiddweller_datamimic&metric=coverage)](https://sonarcloud.io/summary/new_code?id=rapiddweller_datamimic)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Python Version](https://img.shields.io/badge/Python-\u22653.10-blue.svg)](https://www.python.org/downloads/)\n[![GitHub Stars](https://img.shields.io/github/stars/rapiddweller/datamimic.svg)](https://github.com/rapiddweller/datamimic/stargazers)\n[![GitHub Forks](https://img.shields.io/github/forks/rapiddweller/datamimic.svg)](https://github.com/rapiddweller/datamimic/network)\n[![PyPI version](https://badge.fury.io/py/datamimic-ce.svg)](https://badge.fury.io/py/datamimic-ce)\n[![Downloads](https://pepy.tech/badge/datamimic-ce)](https://pepy.tech/project/datamimic-ce)\n---\n\n## Introduction\n\nWelcome to **DATAMIMIC**, the Model-Driven and AI-powered platform that revolutionizes test data generation! By leveraging advanced AI and model-driven technologies, DATAMIMIC enables developers and testers to create realistic, scalable, and privacy-compliant test data with ease.\n\n[![Watch the video](https://img.youtube.com/vi/sycO7qd1Bhk/0.jpg)](https://www.youtube.com/watch?v=sycO7qd1Bhk)\n\n---\n\n## DATAMIMIC Feature Overview \ud83c\udfaf\n\n### Core Features \ud83d\udd35\n\n#### \ud83e\udde0 Model-Driven Generation\n\n- Create sophisticated data models for consistent test data generation\n- Define complex relationships between entities\n- Support for nested and hierarchical data structures\n\n#### \ud83d\udcca Data Types & Integration\n\n- **Basic Data Types Support**\n  - All standard primitive types\n  - Complex data structures\n  - Custom data type definitions\n- **Core Database Integration**\n  - RDBMS support (PostgreSQL, MySQL, Oracle)\n  - MongoDB integration\n  - Basic import/export functionality\n\n#### \ud83d\udee1\ufe0f Data Privacy & Compliance\n\n- GDPR-compliant data anonymization\n- Basic pseudonymization capabilities\n- Data masking for sensitive information\n- Configurable privacy rules\n\n#### \u26a1 Core Capabilities\n\n- **High Performance Engine**\n  - Optimized for large datasets\n  - Parallel processing support\n  - Memory-efficient operations\n- **Python Integration**\n  - Native Python API\n  - Seamless dependency management\n  - Python script extensions\n- **Basic Extensibility**\n  - Custom generator support\n  - Plugin architecture\n  - Basic scripting capabilities\n\n---\n\n### Enterprise Features \ud83d\udfe3\n\n#### \ud83e\udde0 AI-Powered Generation\n\n- **GAN-based Synthesis**\n  - Realistic data patterns\n  - Learning from existing datasets\n  - Pattern replication\n- **LLM Integration**\n  - Natural language content\n  - Context-aware generation\n  - Semantic consistency\n- **Automatic Modeling**\n  - Schema inference\n  - Pattern detection\n  - Model optimization\n\n#### \ud83d\udd17 Advanced Integrations\n\n- **Streaming Support**\n  - Kafka integration\n  - Real-time data generation\n  - Stream processing\n- **Enterprise Formats**\n  - EDI processing\n  - Advanced XSD handling\n  - Custom format support\n- **Advanced Connectors**\n  - Enterprise systems\n  - Cloud platforms\n  - Legacy systems\n\n#### \ud83d\udee1\ufe0f Enhanced Privacy Features\n\n- **Advanced Anonymization**\n  - Context-aware masking\n  - Reversible anonymization\n  - Custom privacy rules\n- **Compliance Tools**\n  - Audit logging\n  - Compliance reporting\n  - Policy enforcement\n- **Enterprise Security**\n  - Role-based access\n  - Encryption support\n  - Security audit trails\n\n#### \ud83d\udcc8 Advanced Data Validation\n\n- **Validation Framework**\n  - Custom rule engines\n  - Complex validation logic\n  - Cross-field validation\n\n---\n\n## Why Use DATAMIMIC?\n\nTraditional test data generation can be time-consuming and may compromise data privacy. DATAMIMIC addresses these challenges by:\n\n- **Reducing Time-to-Market**: Quickly generate test data without manual intervention.\n- **Enhancing Test Coverage**: Simulate diverse data scenarios for comprehensive testing.\n- **Ensuring Compliance**: Maintain data privacy and comply with legal regulations.\n- **Improving Data Quality**: Generate realistic data that mirrors production environments.\n\n---\n\n## Installation\n\n### Prerequisites\n\n- **Operating System**: Windows, macOS, or Linux\n- **Python**: Version **3.10** or higher\n- **Optional**: uv Package Manager for development setup [GitHub](https://github.com/astral-sh/uv)\n\n### User Installation\n\nThe simplest way to get started with DATAMIMIC is through pip:\n\n```bash\npip install datamimic-ce\n```\n\nVerify the installation:\n\n```bash\ndatamimic --version\n```\n\n### Developer Installation\n\nFor contributors and developers who want to work with the source code:\n\n1. Install uv Package Manager:\n\n    ```bash\n    pip install uv\n    ```\n\n2. Clone and set up the repository:\n\n    ```bash\n    git clone https://github.com/rapiddweller/datamimic.git\n    cd datamimic\n    uv sync\n    ```\n\n---\n\n## Usage Guide\n\n### Basic Usage\n\n1. Create a new data generation project:\n\n    ```bash\n    datamimic init my-project\n    cd my-project\n    ```\n\n2. Configure your data model in `datamimic.xml`:\n\n    ```xml\n    <setup>\n        <generate name=\"datamimic_user_list\" count=\"100\" target=\"CSV,JSON\">\n            <variable name=\"person\" entity=\"Person(min_age=18, max_age=90, female_quota=0.5)\"/>\n            <key name=\"id\" generator=\"IncrementGenerator\"/>\n            <key name=\"first_name\" script=\"person.given_name\"/>\n            <key name=\"last_name\" script=\"person.family_name\"/>\n            <key name=\"gender\" script=\"person.gender\"/>\n            <key name=\"birth_date\" script=\"person.birthdate\" converter=\"DateFormat('%d.%m.%Y')\"/>\n            <key name=\"email\" script=\"person.family_name + '@' + person.given_name + '.de'\"/>\n            <key name=\"ce_user\" values=\"True, False\"/>\n            <key name=\"ee_user\" values=\"True, False\"/>\n            <key name=\"datamimic_lover\" constant=\"DEFINITELY\"/>\n        </generate>\n    </setup>\n    ```\n\n3. Generate data:\n\n    ```bash\n    datamimic run datamimic.xml\n    ```\n\n4. Access the generated data in the `output` directory.\n\n    **json export:**\n\n    ```json\n   [\n   {\"id\": 1, \"first_name\": \"Mary\", \"last_name\": \"Mcgowan\", \"gender\": \"female\", \"birth_date\": \"1946-05-15T00:00:00\", \"email\": \"Mcgowan@Mary.de\", \"ce_user\": false, \"ee_user\": true, \"datamimic_lover\": \"DEFINITELY\"},\n   {\"id\": 2, \"first_name\": \"Gabrielle\", \"last_name\": \"Malone\", \"gender\": \"female\", \"birth_date\": \"1989-11-27T00:00:00\", \"email\": \"Malone@Gabrielle.de\", \"ce_user\": false, \"ee_user\": true, \"datamimic_lover\": \"DEFINITELY\"},\n   {\"id\": 4, \"first_name\": \"Margaret\", \"last_name\": \"Torres\", \"gender\": \"female\", \"birth_date\": \"2006-07-13T00:00:00\", \"email\": \"Torres@Margaret.de\", \"ce_user\": false, \"ee_user\": false, \"datamimic_lover\": \"DEFINITELY\"},\n    {\"id\": 5, \"first_name\": \"Monica\", \"last_name\": \"Meyers\", \"gender\": \"female\", \"birth_date\": \"1983-07-22T00:00:00\", \"email\": \"Meyers@Monica.de\", \"ce_user\": true, \"ee_user\": false, \"datamimic_lover\": \"DEFINITELY\"},\n    {\"id\": 6, \"first_name\": \"Jason\", \"last_name\": \"Davis\", \"gender\": \"male\", \"birth_date\": \"1941-07-05T00:00:00\", \"email\": \"Davis@Jason.de\", \"ce_user\": true, \"ee_user\": false, \"datamimic_lover\": \"DEFINITELY\"},\n    {\"...\":  \"...\"},\n    {\"id\": 100, \"first_name\": \"Jared\", \"last_name\": \"Rivas\", \"gender\": \"male\", \"birth_date\": \"1975-03-16T00:00:00\", \"email\": \"Rivas@Jared.de\", \"ce_user\": true, \"ee_user\": true, \"datamimic_lover\": \"DEFINITELY\"}\n   ]\n    ```\n\n    **csv export:**\n\n    ```csv\n    id|first_name|last_name|gender|birth_date|email|ce_user|ee_user|datamimic_lover\n    1|Mary|Mcgowan|female|1946-05-15 00:00:00|Mcgowan@Mary.de|False|True|DEFINITELY\n    2|Gabrielle|Malone|female|1989-11-27 00:00:00|Malone@Gabrielle.de|False|True|DEFINITELY\n    3|Antonio|Davis|male|2005-05-12 00:00:00|Davis@Antonio.de|False|True|DEFINITELY\n    4|Margaret|Torres|female|2006-07-13 00:00:00|Torres@Margaret.de|False|False|DEFINITELY\n    5|Monica|Meyers|female|1983-07-22 00:00:00|Meyers@Monica.de|True|False|DEFINITELY\n    ...\n    100|Jason|Davis|male|1941-07-05 00:00:00|Davis@Jason.de|True|False|DEFINITELY\n    ```\n\n### Advanced Features\n\nDATAMIMIC supports various advanced features:\n\n- **Custom Generators**: Create your own data generators\n- **Data Relationships**: Define complex relationships between entities\n- **Import/Export Formats**: Support for JSON, XML, CSV, RDBMS and MongoDB\n- **Import/Export Formats ( only EE )**: Kafka, EDI, XSD and more\n- **Data Anonymization**: Anonymize data to comply with privacy regulations\n- **Data Validation**: Define and enforce data validation rules\n- **Scripting**: Extend functionality using Python scripts\n- **Database Integration**: Connect to databases for seamless data generation\n- **Model-Driven Generation**: Utilize models to generate realistic data\n- **Validation Rules**: Define and enforce data validation rules\n- **Scripting**: Extend functionality using Python scripts\n\n---\n\n## Examples and Demos\n\nExplore our demo collection:\n\n```bash\n# List available demos\ndatamimic demo list\n\n# Run a specific demo\ndatamimic demo create demo-model\ndatamimic run ./demo-model/datamimic.xml\n```\n\nKey demos include:\n\n- Basic entity generation\n- Complex relationships\n- Database integration\n- Custom generator creation\n- Privacy compliance examples\n\nFind more examples in the `datamimic_ce/demos` directory.\n\n---\n\n## Contributing\n\nWe \u2764\ufe0f contributions! Here's how you can help:\n\n- **Code Contributions**: Submit pull requests for new features or bug fixes.\n- **Documentation**: Improve existing docs or help with translations.\n- **Community Engagement**: Join discussions and support other users.\n\n---\n\n## \ud83d\udcdc DATAMIMIC Licensing Options\n\n### \ud83c\udf1f Community Edition\n\nOpen Source Freedom for Everyone\n\n#### \u2728 Key Benefits\n\n- **\ud83d\udd13 MIT License**: Maximum freedom for innovation\n- **\ud83d\udcbc Commercial Ready**: Use freely in commercial projects\n- **\ud83d\udd04 Modification Rights**: Full source code access and modification rights\n- **\ud83c\udf0d No Restrictions**: Deploy anywhere, anytime\n\n#### \ud83c\udf81 What's Included\n\n- **\ud83d\udce6 Core Features**\n  - Model-driven data generation\n  - Basic data types & integrations\n  - GDPR compliance tools\n  \n- **\ud83d\udc65 Community Support**\n  - Active GitHub community\n  - Public issue tracking\n  - Community discussions\n  - Regular updates\n\n#### \ud83d\udcab Perfect For\n\n- Individual developers\n- Startups & small teams\n- Open source projects\n- Learning & evaluation\n- POC development\n\n---\n\n### \u2b50 Enterprise Edition\n\nProfessional Power for Business Success\n\n#### \ud83d\ude80 Premium Benefits\n\n- **\ud83d\udccb Commercial License**: Enterprise-grade flexibility\n- **\ud83d\udd10 Advanced Features**: Full suite of professional tools\n- **\ud83c\udfaf Priority Support**: Direct access to expert team\n- **\ud83d\udee0\ufe0f Custom Solutions**: Tailored to your needs\n\n#### \ud83d\udc8e Premium Features\n\n- **\ud83e\udd16 AI Capabilities**\n  - GAN-based synthesis\n  - LLM integration\n  - Automated modeling\n  \n- **\ud83d\udd17 Enterprise Integration**\n  - Advanced connectors\n  - Kafka streaming\n  - EDI support\n  \n- **\ud83d\udee1\ufe0f Enhanced Security**\n  - Advanced privacy features\n  - Compliance reporting\n  - Audit trails\n\n#### \ud83c\udfaf Ideal For\n\n- Large enterprises\n- Financial institutions\n- Healthcare organizations\n- Government agencies\n- High-compliance industries\n\n#### \ud83d\udcde Get Started\n>\n> Ready to unlock the full potential of DATAMIMIC?\n\n**Contact Our Team:**\n\n- \ud83d\udce7 Email: [sales@rapiddweller.com](mailto:sales@rapiddweller.com)\n- \ud83c\udf10 Visit: [datamimic.io/enterprise](https://datamimic.io)\n\n---\n\n### \ud83e\udd1d Compare Editions\n\n| Feature | Community | Enterprise |\n|---------|-----------|------------|\n| Base Features | \u2705 | \u2705 |\n| Source Code Access | \u2705 | \u2705 |\n| Commercial Use | \u2705 | \u2705 |\n| AI Features | \u274c | \u2705 |\n| Priority Support | \u274c | \u2705 |\n| Enterprise Integrations | \u274c | \u2705 |\n| SLA Support | \u274c | \u2705 |\n| Custom Development | \u274c | \u2705 |\n\n---\n\n> ***\"Empower your data generation journey with the right DATAMIMIC edition for your needs\"***\n\n---\n\n## Support\n\nNeed help or have questions? We're here for you!\n\n- \ud83d\udcda [Documentation](https://docs.datamimic.io)\n- \ud83d\udcac [GitHub Discussions](https://github.com/rapiddweller/datamimic/discussions)\n- \ud83d\udc1b [Issue Tracker](https://github.com/rapiddweller/datamimic/issues)\n- \ud83d\udce7 [Email Support](mailto:support@rapiddweller.com)\n\n---\n\n## Connect with Us\n\nStay updated and connect with our community!\n\n- \ud83c\udf10 **Website**: [www.datamimic.io](https://datamimic.io)\n- \ud83c\udfe2 **Rapiddweller**: [www.rapiddweller.com](https://rapiddweller.com)\n- \ud83d\udcbc **LinkedIn**: [rapiddweller](https://www.linkedin.com/company/rapiddweller)\n\n---\n\n## Acknowledgments\n\nA big thank you to all our contributors! Your efforts make DATAMIMIC possible.\n\n---\n\n**Don't forget to \u2b50 star and \ud83d\udc40 watch this repository to stay updated!**\n\n---\n\n## Legal Notices\n\nFor detailed licensing information, please see the [LICENSE](LICENSE) file.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": null,
    "version": "1.2.1",
    "project_urls": {
        "Homepage": "https://datamimic.io"
    },
    "split_keywords": [
        "datamimic",
        " data",
        " synthetic",
        " generation",
        " privacy",
        " security",
        " testing",
        " modeling"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a02078e55c6e6bb5cc337f482004df7b64d6bc43528e8d32ba0173732f64a8b6",
                "md5": "4ff5dea5f9e130a64bd428736440b103",
                "sha256": "1e1bf83ab2be87a9169d76c4e5a6e30664b16e8ef469dfd4e8c8e297dbf55d7c"
            },
            "downloads": -1,
            "filename": "datamimic_ce-1.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4ff5dea5f9e130a64bd428736440b103",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 12875566,
            "upload_time": "2025-01-21T05:19:35",
            "upload_time_iso_8601": "2025-01-21T05:19:35.602072Z",
            "url": "https://files.pythonhosted.org/packages/a0/20/78e55c6e6bb5cc337f482004df7b64d6bc43528e8d32ba0173732f64a8b6/datamimic_ce-1.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b05477a720b49e056be7ca3ff6ec234fadb17556ce5dfe4cce6d835bf8ffb1d2",
                "md5": "809179e37666da10cb7ed3dc3c0e3ecc",
                "sha256": "fb3567ff7add82c6c5ae1e0df73c7a9a8e78786dc587b0713eaa9204b7cff0a3"
            },
            "downloads": -1,
            "filename": "datamimic_ce-1.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "809179e37666da10cb7ed3dc3c0e3ecc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 12385911,
            "upload_time": "2025-01-21T05:19:39",
            "upload_time_iso_8601": "2025-01-21T05:19:39.470376Z",
            "url": "https://files.pythonhosted.org/packages/b0/54/77a720b49e056be7ca3ff6ec234fadb17556ce5dfe4cce6d835bf8ffb1d2/datamimic_ce-1.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-21 05:19:39",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "datamimic-ce"
}
        
Elapsed time: 1.33611s