# dataos-cookiecutter
**dataos-cookiecutter** package provides commands to facilitate various tasks of Lens2, enabling users to efficiently generate templates, perform schema checks, generate data quality checks yaml, and create Board YAML configurations.
## Installation
You can install **dataos-cookiecutter** via pip:
```bash
pip install dataos-cookiecutter
```
## Usage
dataos-cookiecutter offers several commands to simplify Lens2-related tasks:
1. **lens2 lens**: This command allows users to get started by creating a sample template along with folder structure, which they can modify based on their needs. It includes two flags:
- `-n lens_name`: Specifies the name of the Lens.
- `-s source_type`: Specifies the type of data source.
```bash
lens2 create -n <lens2_name> -d <lens2_dir_name> -s <source_type>
```
2. **lens2 checks**: This command provides two subcommands:
- **schema-check**: Validates that all dimensions used in Lens2 tables are fulfilled by the SQL provided of table.
- **create**: Creates checks YAML files and stores them in the checks folder.
```bash
# Validate dimensions in Lens2 tables
lens2 checks schema-check -n tables/views '(comma separated)'
# Create checks YAML files
lens2 checks create -n tables/views '(comma separated)'
```
3. **lens2 board**: This command provides two subcommands for Board related tasks:
- **create**: Creates View Board YAML made public in Lens2 and stores files in the boards/view_name folder.
- **start**: Uses the generated Board content and starts Board to explore. This command only requires a view name (not comma separated values).
```bash
# Create Board dashboard YAML for Lens2 views
lens2 board create -n views '(comma separated)'
# Start Board with generated content of View
lens2 board start -n view_name
```
Raw data
{
"_id": null,
"home_page": "https://bitbucket.org/rubik_/dataos-cookiecutter",
"name": "dataos-cookiecutter",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": null,
"author": "devendrasr",
"author_email": "devendra@tmdc.io",
"download_url": "https://files.pythonhosted.org/packages/4c/87/a5d2c8de4dd5e6a550c7d1454c6160b77865b7df4d4cf6b7df32e72a514f/dataos-cookiecutter-0.0.5.tar.gz",
"platform": null,
"description": "# dataos-cookiecutter\n\n**dataos-cookiecutter** package provides commands to facilitate various tasks of Lens2, enabling users to efficiently generate templates, perform schema checks, generate data quality checks yaml, and create Board YAML configurations.\n\n## Installation\n\nYou can install **dataos-cookiecutter** via pip:\n\n```bash\npip install dataos-cookiecutter\n```\n\n## Usage\n\ndataos-cookiecutter offers several commands to simplify Lens2-related tasks:\n\n1. **lens2 lens**: This command allows users to get started by creating a sample template along with folder structure, which they can modify based on their needs. It includes two flags:\n - `-n lens_name`: Specifies the name of the Lens.\n - `-s source_type`: Specifies the type of data source.\n\n ```bash\n lens2 create -n <lens2_name> -d <lens2_dir_name> -s <source_type>\n ```\n\n2. **lens2 checks**: This command provides two subcommands:\n - **schema-check**: Validates that all dimensions used in Lens2 tables are fulfilled by the SQL provided of table.\n - **create**: Creates checks YAML files and stores them in the checks folder.\n\n ```bash\n # Validate dimensions in Lens2 tables\n lens2 checks schema-check -n tables/views '(comma separated)'\n \n # Create checks YAML files\n lens2 checks create -n tables/views '(comma separated)'\n ```\n\n3. **lens2 board**: This command provides two subcommands for Board related tasks:\n - **create**: Creates View Board YAML made public in Lens2 and stores files in the boards/view_name folder.\n - **start**: Uses the generated Board content and starts Board to explore. This command only requires a view name (not comma separated values).\n\n ```bash\n # Create Board dashboard YAML for Lens2 views\n lens2 board create -n views '(comma separated)'\n \n # Start Board with generated content of View\n lens2 board start -n view_name\n ```\n",
"bugtrack_url": null,
"license": null,
"summary": "Dataos Cookiecutter",
"version": "0.0.5",
"project_urls": {
"Homepage": "https://bitbucket.org/rubik_/dataos-cookiecutter"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "dcb86b2e36dd2076cf677103135f238d6fcec380c3eab919d0f7aa39218949fe",
"md5": "fc72a7ae56df2ed6707e71c815c67bf0",
"sha256": "0de7b0eded77314e057323fe26b30e9f837dab8830ba6955ce55954ccc1ef2a6"
},
"downloads": -1,
"filename": "dataos_cookiecutter-0.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "fc72a7ae56df2ed6707e71c815c67bf0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 17074,
"upload_time": "2024-04-14T12:34:27",
"upload_time_iso_8601": "2024-04-14T12:34:27.383746Z",
"url": "https://files.pythonhosted.org/packages/dc/b8/6b2e36dd2076cf677103135f238d6fcec380c3eab919d0f7aa39218949fe/dataos_cookiecutter-0.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4c87a5d2c8de4dd5e6a550c7d1454c6160b77865b7df4d4cf6b7df32e72a514f",
"md5": "7ddd1c8abd50f55397a7fc0765b20919",
"sha256": "ab25ee8c208d1d501acebe3b5ccd8c70a67500cbc1098ab3318d519fdd1c0158"
},
"downloads": -1,
"filename": "dataos-cookiecutter-0.0.5.tar.gz",
"has_sig": false,
"md5_digest": "7ddd1c8abd50f55397a7fc0765b20919",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 12897,
"upload_time": "2024-04-14T12:34:29",
"upload_time_iso_8601": "2024-04-14T12:34:29.392790Z",
"url": "https://files.pythonhosted.org/packages/4c/87/a5d2c8de4dd5e6a550c7d1454c6160b77865b7df4d4cf6b7df32e72a514f/dataos-cookiecutter-0.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-14 12:34:29",
"github": false,
"gitlab": false,
"bitbucket": true,
"codeberg": false,
"bitbucket_user": "rubik_",
"bitbucket_project": "dataos-cookiecutter",
"lcname": "dataos-cookiecutter"
}